Project Scheduling for Maximum NPV with Variable Activity Durations and Uncertain Activity Outcomes

Stefan Creemers1, Roel Leus1, Bert De Reyck2,3 and Marc Lambrecht1

1K.U.Leuven, Belgium
2University College London, United Kingdom
3London Business School, London, United Kingdom
Introduction:

Activity failure

- Common to many R&D-projects (especially NPD), but also occurs in other sectors: pharmaceuticals, chemicals, construction industry, software development, innovation, ...

- Individual activity failure results in overall project failure
 => project pay-off is not obtained
 - FDA review
 - toxicology tests
 - undesirable side effects
 - building permit
 - loan requests
 - market potential
 - patent infringement
 - ...

Problem Description:

Example
Problem description:

Example: deterministic durations
Problem description:
Example: deterministic durations
Problem description:
Example: deterministic durations

Feasible schedule

- **1**: -3M$ at time 1
- **2**: -1M$ at time 2
- **3**: -2M$ at time 3
- **4**: -12M$ at time 4
- **5**: -17M$ at time 5

Discounting: $c_i \times e^{-rt}$

Result = 39.60 M$
Problem description:

Example: deterministic durations

Feasible schedule
Problem description:

Example: deterministic durations
Problem description:

Example: deterministic durations
Problem description:

Example: deterministic durations
Problem description:

Example: deterministic durations
Problem Description:

Definitions

- Stochastic activity durations (exponentially distributed) => use of a Continuous Time Markov Decision Chain
- Expected-NPV-objective: incurred cash flow c_i at the start of activity i
- Optimization over the set of policies that start activities at the end of other activities
- Number of activities n
- Mean duration d_i of activity i
- Activity i has probability of technical success p_i
- Discount rate r
- No renewable resource constraints
Model Description:

Stochastic durations – Continuous time Markov decision chain

- **Preliminary concepts:**
 - Status of activity i at time t:
 - Not started $\Omega_i(t)=0$
 - Started/in progress $\Omega_i(t)=1$
 - Started $\Omega_i(t)=2$
 - $\Omega(t)=(\Omega_0(t), \Omega_1(t), ..., \Omega_n(t))$ defines the state of the system

Size of statespace Q has upper bound $|Q|=3^n$

Most of these states do not satisfy precedence constraints

\Rightarrow a strict and clear definition of the statespace is essential

\Rightarrow use of UDC-concept to define the statespace
Model Description:

UDC: max set of activities that can be executed in parallel
Model Description:

UDC: max set of activities that can be executed in parallel
Model Description:

UDC: max set of activities that can be executed in parallel
Model Description:

UDC: max set of activities that can be executed in parallel
Model Description:

UDC: max set of activities that can be executed in parallel
Model Description:

UDC: max set of activities that can be executed in parallel
Model Description:

Network of UDCs
Model Description:

Illustration of statespace and backward SDP-recursion
Model Description:

Illustration of statespace and backward SDP-recursion

States assigned to UDC:

\[(2,2,2,2,2,0) \rightarrow 80 \text{M}\$\]
Model Description:
Illustration of statespace and backward SDP-recursion
Model Description:
Illustration of statespace and backward SDP-recursion

States assigned to UDC:
(2,2,2,2,1,0)
(2,2,2,2,2,0) [80.00 M$]
Model Description:

Illustration of state space and backward SDP-recursion

States assigned to UDC:
\((2,2,2,2,1,0) \)
\((2,2,2,2,2,0) \) [80.00 M$]

Discount factor: \(\left(\frac{1}{d_i}\right) \times (r + \left(\frac{1}{d_i}\right))^{-1} \)
\(d_5 = 3 \Rightarrow \) Discount factor = 0.97
Discounted value at state entry = 77.67 M$
\(p_5 = 0.75 \Rightarrow \) NPV at state entry = 58.25 M$
Model Description:
Illustration of statespace and backward SDP-recursion

States assigned to UDC:
\[(2,2,2,2,2,1,0) \rightarrow 58.25\text{M}\$
\[(2,2,2,2,2,0) \quad [80.00\text{M}]\$

Discount factor : \((1/d_t)\times(r+(1/d_t))^{-1}\)
\[d_5 = 3 \Rightarrow \text{Discount factor} = 0.97\]
Discounted value at state entry = 77.67\text{M}\$
\[p_5 = 0.75 \Rightarrow \text{NPV at state entry} = 58.25\text{M}\$
Model Description:
Illustration of statespace and backward SDP-recursion

States assigned to UDC:
(2,2,2,2,1,0) -> 58.25M$
(2,2,2,2,0,0)
Model Description:
Illustration of statespace and backward SDP-recursion

States assigned to UDC:

\[(2,2,2,2,2,1,0) \rightarrow 58.25M\$$
\[(2,2,2,2,2,0,0)\]

\[(2,2,2,2,2,1,0) \rightarrow [58.25M]$$
Model Description:
Illustration of statespace and backward SDP-recursion

States assigned to UDC:

(2,2,2,2,2,1,0) -> $58.25M$
(2,2,2,2,2,0,0)
(2,2,2,2,2,1,0) [58.25M$]

Only decision left is to start activity 5
=> incur cost $c_5 = -17M$
=> NPV at state entry = 41.25M$
Model Description:
Illustration of statespace and backward SDP-recursion

States assigned to UDC:
(2,2,2,2,2,1,0) -> 58.25M$
(2,2,2,2,2,0,0) -> 41.25M$
(2,2,2,2,2,1,0) [58.25M$]

Only decision left is to start activity 5
=> incur cost $c_5 = -17M$
n=> NPV at state entry = 41.25M$
Model Description:
Illustration of statespace and backward SDP-recursion

States assigned to UDC:

- \((2,2,2,2,1,0) \rightarrow 58.25\text{M}\$\)
- \((2,2,2,2,0,0) \rightarrow 41.25\text{M}\$\)
- \((2,2,2,1,2,0)\)
Model Description:

Illustration of statespace and backward SDP-recursion

States assigned to UDC:

- $(2,2,2,2,2,1,0) \rightarrow 58.25\text{M}$
- $(2,2,2,2,2,0,0) \rightarrow 41.25\text{M}$
- $(2,2,2,2,1,2,0) \rightarrow 41.25\text{M}$
- $(2,2,2,2,2,2,0) \rightarrow 80.00\text{M}$
Model Description:
Illustration of statespace and backward SDP-recursion

States assigned to UDC:
- \((2,2,2,2,2,1,0) \rightarrow 58.25M\$\)
- \((2,2,2,2,2,0,0) \rightarrow 41.25M\$\)
- \((2,2,2,2,1,2,0) \rightarrow 76.92M\$\)
- \((2,2,2,2,2,2,0) \rightarrow 80.00M\$\)
Model Description:
Illustration of statespace and backward SDP-recursion

States assigned to UDC:
- \((2,2,2,2,2,1,0) \rightarrow 58.25 \text{M\$}\
- \((2,2,2,2,2,0,0) \rightarrow 41.25 \text{M\$}\
- \((2,2,2,2,1,2,0) \rightarrow 76.92 \text{M\$}\
- \((2,2,2,2,1,1,0) \rightarrow \)
Model Description:
Illustration of statespace and backward SDP-recursion

States assigned to UDC:
(2,2,2,2,2,1,0) -> 58.25M$
(2,2,2,2,2,0,0) -> 41.25M$
(2,2,2,2,1,2,0) -> 76.92M$
(2,2,2,2,1,1,0)
(2,2,2,2,1,0) [58.25M$
(2,2,2,2,1,2,0) [76.92M$]
Model Description:
Illustration of statespace and backward SDP-recursion

States assigned to UDC:
(2,2,2,2,2,1,0) -> 58.25M$
(2,2,2,2,2,0,0) -> 41.25M$
(2,2,2,2,1,2,0) -> 76.92M$
(2,2,2,2,1,1,0)

(2,2,2,2,2,1,0) [58.25M$]
(2,2,2,2,1,2,0) [76.92M$]

Probability activity finishing first
=> (1/di) x (SUM(1/di)^-1)
Model Description:
Illustration of statespace and backward SDP-recursion

States assigned to UDC:
- $(2,2,2,2,1,0) \rightarrow 58.25M$
- $(2,2,2,2,0,0) \rightarrow 41.25M$
- $(2,2,2,1,2,0) \rightarrow 76.92M$
- $(2,2,2,1,1,0)$

43% $(2,2,2,2,1,0) \rightarrow [58.25M]$
57% $(2,2,2,2,1,2,0) \rightarrow [76.92M]$

Probability activity finishing first
$=> (1/d_i) \times (\text{SUM}(1/d_i))^{-1}$
Model Description:

Illustration of statespace and backward SDP-recursion

States assigned to UDC:

- \((2,2,2,2,1,0) \rightarrow 58.25M\$\)
- \((2,2,2,2,0,0) \rightarrow 41.25M\$\)
- \((2,2,2,1,2,0) \rightarrow 76.92M\$\)
- \((2,2,2,1,1,0) \rightarrow 56.96M\$\)

43% \((2,2,2,2,1,0) [58.25M]\$
57% \((2,2,2,2,1,2,0) [76.92M]\$

Probability activity finishing first

\[=> (1/d_i) \cdot (\text{SUM}(1/d_i))^{-1} \]
Model Description:
Illustration of statespace and backward SDP-recursion
Model Description:

Illustration of statespace and backward SDP-recursion

States assigned to UDC:

- $(2,2,2,0,0,0,0)$
- $(2,2,2,1,0,0,0)$ $[21.51M\$]$
- $(2,2,2,0,1,0,0)$ $[17.46M\$]$
- $(2,2,2,0,0,1,0)$ $[18.26M\$]$
- $(2,2,2,1,1,0,0)$ $[17.46M\$]$
- $(2,2,2,1,0,1,0)$ $[18.26M\$]$
- $(2,2,2,0,1,1,0)$ $[14.26M\$]$
- $(2,2,2,1,1,1,0)$ $[14.17M\$]$

Not started
- Started
- Finished
Model Description:

Illustration of statespace and backward SDP-recursion
Model Description:

Illustration of the optimal policy
Model Description:

Illustration of the optimal policy
Model Description:

Illustration of the optimal policy
Model Description:

Illustration of the optimal policy
Model Description:

Illustration of the optimal policy
Model Description:

Illustration of the optimal policy
Model Description:

Illustration of the optimal policy
Model Description:

Illustration of the optimal policy
Model Description:

Illustration of the optimal policy
Model Description:

Illustration of the optimal policy
Computational performance (seconds):

AMD Athlon (1.8GHz) – 2048MB RAM

<table>
<thead>
<tr>
<th>n</th>
<th>Number of networks analyzed</th>
<th>Average CPU-time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$OS = 0.8$</td>
<td>$OS = 0.6$</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>50</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>60</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>70</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>80</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>90</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

OS: Order strength; a measure of network density
Conclusions:

Contribution & future research

- **Contribution:** we develop a model that incorporates:
 - Stochastic activity durations
 - NPV-objective
 - Activity failure
 - Good computational performance (networks of 120 activities are solved to optimality)

- **Future research:**
 - Modular projects
 - General durations using Phase-Type distributions
 - Resources
 - Activity delay