Project scheduling with alternative technologies: incorporating varying activity duration variability

Stefan Creemers
Roel Leus
Bert De Reyck

December 8, 2010
Introduction

• A project is a set of precedence-related activities that need to be completed in order to achieve a specific target
• Our objective is to schedule the activities of a project such that its value is maximized
• We examine how to incorporate the following characteristics:
 – Activity failure
 – Modular completion structure of the project
 – Different levels of variability in the durations of the activities
• Relevant especially for R&D and NPD but also in other sectors: pharmaceuticals, software development, ...
• Project network with n activities (activity is on the node)
• Project network with \(n \) activities (activity is on the node)
• Stochastic activity durations: expected duration \(E[D_j] \) of activity \(j \)
• Project network with n activities (activity is on the node)
• Stochastic activity durations: expected duration $E[D_j]$ of activity j
• Cash flow c_j is incurred at the start of activity j
- Project network with n activities (activity is on the node)
- Stochastic activity durations: expected duration $E[D_j]$ of activity j
- Cash flow c_j is incurred at the start of activity j
- End-of project payoff C obtained upon overall project success
• Project network with n activities (activity is on the node)
• Stochastic activity durations: expected duration $E[D_j]$ of activity j
• Cash flow c_j is incurred at the start of activity j
• End-of project payoff C obtained upon overall project success
• Time value of money => discount rate r
the present value of a cash flow c after a time t is given by $c \cdot e^{-rt}$
- Project network with \(n \) activities (activity is on the node)
- Stochastic activity durations: expected duration \(E[D_j] \) of activity \(j \)
- Cash flow \(c_j \) is incurred at the start of activity \(j \)
- End-of project payoff \(C \) obtained upon overall project success
- Time value of money => discount rate \(r \):
 the present value of a cash flow \(c \) after a time \(t \) is given by \(c \cdot e^{-rt} \)
- Failures: each activity \(j \) has a probability of technical success \(p_j \)
• Project network with \(n \) activities (activity is on the node)
• Stochastic activity durations: expected duration \(E[D_j] \) of activity \(j \)
• Cash flow \(c_j \) is incurred at the start of activity \(j \)
• End-of project payoff \(C \) obtained upon overall project success
• Time value of money => discount rate \(r \):
 the present value of a cash flow \(c \) after a time \(t \) is given by \(c \cdot e^{-rt} \)
• Failures: each activity \(j \) has a probability of technical success \(p_j \)
• \(m \) modules \(N_i \)
Solution methodology

We build on earlier work of Creemers et al. (2010)*:

• At any moment in time, the state of each activity \(j \) can be:
 – Not Started
 – In progress
 – Past (successfully finished, failed or considered redundant because another activity of its module has completed successfully)

• The state of the system is defined by the state of the activities
• Use of Phase-Type distributions to model activity durations
• Use of a Continuous-Time Markov chain to model the statespace
• The optimal eNPV is found using a backward SDP-recursion

Research Question

• What is the impact of the variability of activity durations on the eNPV of a project?

• Experimental setup:
 – All activities in the project have the same level of variability
 – Variability is expressed using the Squared Coefficient of Variation (SCV)
 – We observe SCV’s ranging from 0 (deterministic) to ∞
 – We use Phase-Type distributions to model the activity durations*

Preliminary computational results indicate that networks with up to 60 activities can be solved to optimality.
Individual activity level
Summary

• We have extended the model of Creemers et al. (2010) to incorporate general activity durations (using Phase-Type distributions) & to allow for modular projects

• We have shown that variability in the duration of activities is not always bad with respect to the NPV of a project

• We have shown that even for a single activity, variability in the duration can be beneficial