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Abstract - We study collaborative shipping where two shippers bundle their

shipments to share the same transportation vehicle (also known as co-loading).

The goal of such a collaboration is to reduce the total number of transports,

thereby reducing transportation costs and CO2 emissions. To synchronize the re-

plenishment of both companies, we adopt a can-order joint replenishment policy

for both companies, and we analyze how the costs of each individual company are

impacted by the collaboration. We consider different agreements to redistribute

the costs (or the gains) of the collaboration, ranging from no cost redistribution

at all, sharing the transportation costs (or its gains) only, to sharing the total

logistics costs (or its gains) that are impacted by the collaboration, i.e., trans-

portation + inventory costs. We show that the stability (and thus the long-term

viability) of the partnership strongly depends on the cost-sharing agreement, in

combination with the allocation mechanism used to share the costs (or gains) of

the coordination. Although most companies focus on the redistribution of trans-

portation costs, we show that this might not lead to a stable situation where each

individual company eventually benefits from collaboration.

Keywords - supply chain management, horizontal collaboration, joint replen-

ishment, co-loading, can-order policy, gain sharing, cost allocation

1 Introduction

Collaborations in the supply chain have proven to be a successful means to reduce logistics

costs within one and the same supply chain (Goyal and Gupta, 1989). This type of vertical

supply chain collaborations are typically established between suppliers and buyers. Hori-

zontal collaborations, on the other hand, are established between companies that operate at

the same level in different supply chains, i.e., between suppliers or between buyers. Sharing
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transportation capacity when moving freight is an example of this type of horizontal collab-

oration, an option that benefits the environment and yields substantial network efficiencies

(Saenz, 2012). Cruijssen et al. (2007a,b) review the literature on horizontal cooperation in

transport and logistics and highlight its opportunities and impediments.

These horizontal collaborative shipping agreements are gaining attraction in today’s busi-

ness world. By bundling or co-loading transport shipments, the available space in transporta-

tion vehicles can be utilized more efficiently. A 2009 World Economic Forum report indicates

that 24% of “goods vehicles kms” in the EU are running empty. When carrying a load, ve-

hicles are typically loaded for only 57% of their maximum gross weight (Doherty and Hoyle,

2009). This problem of low utilization rates is getting worse. The total cost was estimated

at 160e billion in 2012, compared to 120e billion in 2001 (Saenz, 2012). After optimizing

internally, companies now look for opportunities beyond their own walls. That is why com-

panies have started co-loading or bundling their shipments, by setting up partnerships with

other shippers, whether or not they are direct competitors, with the objective to further

reduce transportation costs and CO2 emissions. Vanovermeire et al. (2014) report on some

recent (successful) horizontal logistics alliances.

A collaboration agreement is usually set up to maximize the gains of the partnership.

However, in order to have a stable (i.e., successful and sustainable in the long term) collab-

oration, each company should be able to reduce its individual costs, otherwise there is no

incentive to participate. This means that not only the total logistics cost of the coalition

should be reduced, the individual performance of each company is equally important, com-

pared to the stand-alone situation where there is no collaboration. Therefore, an agreement

can be made to either redistribute the (joint) collaboration costs to each company according

to a partition rule, or to allocate the gains of the collaboration among each participating com-

pany. A wide range of possible cost and/or gain sharing allocation mechanisms are available

for this purpose. Besides the selected allocation mechanism, the companies also need to agree

on which set of costs (or gains) will be redistributed. In most horizontal logistics alliances,

the primary focus has always been on (gains and allocations of) the transportation costs.

However, the synchronization of shipments also impacts each company’s inventory holdings.

To maximize the gains of collaborative shipping, the collaborating partners are required to

be flexible: they have to replenish their inventories either sooner or later than originally

planned in order to benefit from joint transport. It may thus occur that a company reduces

its transportation costs at the expense of higher inventory levels. Therefore, one should

look at the total logistics costs resulting from the collaboration, as both transportation and

inventories are impacted by the collaboration.

In this article, we analyze each company’s transportation and inventory cost performance
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when they set up a collaborative shipping agreement that maximizes the coalition gains (i.e.,

minimizes the total joint logistics costs). We consider four types of cost-sharing agreements:

1. Each company pays for its own transportation and inventory costs, and no costs or

gains are redistributed. When company i joins the transport organized by company j,

then company i does not pay for it; when company j joins the transport of company i,

company j does not pay for it neither.

2. When multiple companies share space on the same vehicle (or any other transportation

mode), they can decide to share the costs of the vehicles, which we denote as the

major transportation costs. When the shipments do not have the exact same origin

or destination, they may be consolidated using multi-stop truckloads. Under this

agreement, each shipper pays for their own handling and minor transportation costs

to accommodate for its individual pick-up and/or drop-off. Each company also pays

for its own inventory holding costs.

3. Given that the benefits in joint major transportation costs are not possible without

the multi-stop pick-ups, companies may agree to share and redistribute the total trans-

portation costs, which is the sum of both major and minor transportation costs. Again,

each company pays for its own inventory holding costs.

4. Finally, we consider the case where all logistics costs that are impacted by the coor-

dination are redistributed. This means that both transportation as well as inventory

holding costs are accounted for in the partnership, and either the total logistics costs

or gains are redistributed among the participating companies.

The objective of this article is to investigate how the stability (and thus the long-term

viability) of the collaborative shipping agreement is impacted by the cost-sharing agreement

and the allocation mechanism used to share the costs or gains of the collaboration. We

study a simplified setting with two companies. We assume that both companies sell a

single item and the demand for each item follows an independent Poisson process. A can-

order policy is used to synchronize the orders, and to enable joint replenishment of both

companies. Assuming zero lead times, a Markov model is used to quantify the individual

cost performance of transportation and inventory holdings under the can-order policy.

The article is structured as follows. Section 2 discusses the literature related to our

work. Section 3 describes the analysis to quantify the transportation and inventory costs

of each company when they adopt the can-order policy to synchronize orders, or when they

operate independently. Section 4 discusses the cost-sharing agreements and the allocation
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mechanisms to distribute the costs or gains of the collaboration. Section 5 presents the

results of an extensive computational experiment, and section 6 concludes.

2 Related Literature

In this article, we adopt a joint replenishment policy to synchronize orders of different ship-

pers in a collaborative shipping agreement. The Joint Replenishment Problem (JRP) is a

common problem in inventory-management literature, dealing with the synchronization of

orders of different items within one and the same company. The goal of the JRP is to identify

an order policy that minimizes inventory and ordering costs. The JRP usually assumes that

there is a major and a minor order cost: the major cost is incurred each time an order is

placed whereas the minor cost is incurred for each item that is added to the order. The JRP

literature is rich: it can be divided into deterministic vs. stochastic models and periodic- vs.

continuous-review models. We refer to Goyal and Satir (1989) and Khouja and Goyal (2008)

for an overview of the JRP literature.

Ignall (1969) has shown that, even in a setting with zero lead times, the optimal JRP

policy is not straightforward (e.g., the order quantity of one product can depend on the

inventory level of another product). In this article, we focus on one particular class of JRP

policies: the can-order policy. The can-order policy was first introduced by Balintfy (1964)

and is a natural extension of the (S, s) policy with a third parameter: the can-order level c.

In Section 3 we describe the control mechanisms of the can-order policy in greater detail.

Although the control mechanism of the can-order policy is rather simple, the interac-

tion between the products makes determining the optimal parameters difficult. Silver (1974,

1981), Thompstone and Silver (1975), Federgruen et al. (1984), and others suggest to de-

compose the N -item problem into N single-item problems by representing the joint orders

as “special discount opportunities” that incur a reduced set-up costs for all the other items

after item i has been ordered. As such, the discount opportunity for a given item is the

superposition of the order processes of all other items. However, since the order decisions at

one company depend on the inventory level of the other company, analyzing each company’s

inventory system separately results in a model that is no longer exact. The algorithm of

Silver (1974) with Poisson demand and constant lead times is closest to our setting; how-

ever, their approach tends to overestimate the joint cost. The decomposition approach of

Thompstone and Silver (1975), Silver (1981) and Federgruen et al. (1984) approximates the

number of joint orders by means of a Poisson process; Schultz and Johansen (1999) show

(using simulation) that the Erlang-r distribution provides a better fit for the time between

two joint orders – they find that in most cases, their approach outperforms the approach of
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Federgruen et al. (1984). However, it is evident that the number of joint orders of each com-

pany is not independent, which means that the decomposition approach will always remain

an approximation.

In our article, we do not decompose the problem into two single-item inventory systems.

We use a Markov chain with two dimensions instead of only one (i.e., for each additional item

an extra dimension is required to keep track of its inventory level). This approach allows

us to obtain exact cost figures. Our solution approach is closely related to the two-item

models presented in Kayiş et al. (2008) and Timmer et al. (2013). Kayiş et al. (2008) model

the two-item problem with positive lead times of equal length and an identical demand

and cost structure (but different penalty costs for each company). Timmer et al. (2013)

present a two-company coordination model where each company has an independent Poisson

demand process and zero lead times. However, they do not include minor order costs, and

consequently both companies always order jointly if one of the two reaches its respective

reorder point (this policy coincides with a can-order policy where the can-order level equals

the base-stock level). Their solution approximation is similar to Silver (1965). Our model

copes with a more general fixed order cost structure and allows companies to have minor

order costs as well as different cost and/or demand parameters; albeit with zero lead times.

The models in JRP literature are typically taken from the perspective of one company in

a multi-item setting. Although several authors (e.g., Federgruen et al. (1984) and Kayiş et al.

(2008)) state that a multi-item setting is equivalent to a multi-company setting, the practical

difference is that in a multi-item setting, it is sufficient to analyze the cost reductions in total,

rather than the cost reductions per individual item. Also, there is no need to redistribute

the savings among the different items within the same company. This is different in a multi-

company setting, where each company is interested in an individual cost reduction, and

therefore the gains of the coordination need to be properly redistributed to each company in

a fair and stable manner to ensure a long-term partnership. For this reason, Meca et al. (2004)

have introduced inventory games to study mechanisms that share the joint costs resulting

from inventory management under coordination. Most of the inventory game models treat

demand as deterministic and exclude the minor order cost, which reduces the complexity of

the problem, allowing it to be solved in polynomial time (Drechsel and Kimms, 2011). The

research on inventory games that includes minor costs assumes a deterministic demand and

solves the problem by means of a power-of-two policy (see for instance Federgruen and Zheng

(1992), Anily and Haviv (2007), Dror and Hartman (2007), Zhang (2009), Fiestras-Janeiro

et al. (2011), and Dror et al. (2012)). To the best of our knowledge, Timmer et al. (2013)

has the only article that considers the allocation of joint costs under a stochastic demand.

They study a two-company coordination where the companies have independent Poisson
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demand processes and zero lead times. However, they do not include minor order costs,

and consequently, both companies always order jointly if one of them reaches its respective

reorder point. Our approach allows for both stochastic demand and minor order cost. In case

companies are not identical, the optimal number of orders placed jointly and/or individually

is not the same for each company. This makes the decision on cost allocation less evident.

Once we have seen the cost savings resulting from collaboration, we deal with the problem

of how to share the benefits of that collaboration among the different partners. This is not

an easy question, since it is not obvious what the contribution of each company to the total

cost savings is. Literature proposes many sharing mechanisms or cost allocations. Guajardo

and Rönnqvist (2016) provide a recent overview of the cost-allocation methods found in the

literature on collaborative transportation. Some are based on simple proportional rules, and

others are based on theoretical concepts found in game theory. In contrast to game theoretical

approaches, the former is more readily understandable and has more practical applications,

because game theoretical concepts have a higher complexity. Certainly, one of the easiest

approaches to allocate costs is the egalitarian method, which assigns equal cost shares to all

the players. However, in this case, the input of each partner is ignored completely. A simple

approach for cost allocation is to use a proportional ratio based on individual indicators of

each partner in the collaboration; e.g., transportation volume, individual costs, etc. These

concepts are working with activity measures.

A more advanced approach is to use principles based on cooperative game theory. The

game theoretic gain sharing mechanisms go back to the bargaining problem defined by Nash

(1950). Different methods based on game theory can be shown to have different theoretical

properties. A frequently used allocation method is the so-called Shapley value (Shapley,

1953). The Shapley value and most of the better-known bargaining solutions in cooperative

game theory of a two-player game all coincide with the “standard solution”(Nash, 1950;

Aumann and Maschler, 1985). In words, the standard solution gives each player the amount

that they can assure themselves, and divides the remainder equally between the two players.

The standard solution makes sense, given that none of the gains can be achieved without

both of the companies being present in the collaboration.

We contribute to the above stream of literature in the following ways: (1) we analyze

the individual (transportation and inventory) cost performance when a can-order policy is

adopted in a multi-company setting; (2) we analyze the redistribution of coordination costs

and gains under different agreements, each characterized by a different set of costs to be

allocated, and different cost-allocation mechanisms; (3) we evaluate when a collaborative

shipping agreement is stable, and what allocation mechanism is to be used for each type of

cost-sharing agreement.
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3 Inventory control model

We study a single-item inventory model under continuous review, in which two companies

(shippers), N = {1, 2}, want to set up a collaborative shipping agreement to minimize

logistics costs. Each company’s demand is generated from an independent Poisson process

with rate λi > 0 for each i ∈ N . We assume zero lead times, which means that the inventory

is replenished immediately after an order is placed. The companies are not allowed to run

out of stock. As a result, there are no shortages or backlog.

We assume the following costs in our model. For each unit in inventory, company i incurs

a holding cost hi > 0 per unit of time. When a company i initiates a replenishment order Qs
i ,

it incurs a transport cost K+ki > 0 per replenishment, where K is the major transport cost

per replenishment (e.g., the transport cost of the truck or train to transport the goods) and

ki the minor transport cost of this replenishment (e.g., the handling cost, or the cost of the

last mile to reach company i’s origin or destination). In this article, we use the terminology

of major and minor transport cost, which corresponds to the major and minor order cost

in JRP terminology. If company j 6= i joins the order (and the transport) of company i

with order Qc
j, it incurs only its minor transport cost kj. Company j may decide not to

join company i’s transport, for instance when it has sufficient inventory and does not want

to pay the minor transport cost. In a second phase, the logistics costs can be redistributed

among the companies, depending on the cost-sharing agreement, as will be discussed later.

3.1 The stand-alone model

To benchmark the cost performance under collaboration, we first analyze the cost perfor-

mance when there is no horizontal collaboration, and each company operates independently

(the stand-alone model). When there is no collaboration, the inventory dynamics of the

companies are independent, and each company replenishes inventory following the (Qi, si)

policy. When no shortages are allowed, the continuous-review, zero lead time setting fol-

lows the analysis presented in Silver (1974): the inventory is immediately replenished by

an amount of Qi, every time the inventory level is depleted to zero. In the remainder of

this paper we will adopt this convention of setting si = 0, although it is worth noting that

the reorder point under the zero lead time assumption can be set to si = −1 because of

instantaneous replenishment.

A cycle is defined as the interval of time between two subsequent replenishments. With

Poisson demand arrivals, the length of time in any state is exponentially distributed with

mean 1/λi, and the time between orders follows an Erlang distribution with expectation

Qi/λi. Thus, the expected number of orders per unit time is defined as the inverse of the
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expected cycle length, which is given by λi/Qi.

The inventory level process is a renewal process that regenerates every time an order is

placed. The inventory position random variable has state space {1, ..., Qi}. In steady state,

the probability of visiting each of the inventory position states is uniformly distributed

with probability 1/Qi, and the expected inventory level of company i equals (Qi+1)/2. The

expected costs of company i in the stand-alone model, Cnc
i (the superscript nc denoting no

collaboration) are given by:

Cnc
i = (K + ki) η

nc
i + hiπ

nc
i

= (K + ki)
λi
Qi

+ hi
Qi + 1

2
, (1)

where ηnci denotes the expected number of orders placed, and πnci is the expected inventory

level of company i.

The optimal order quantity in the stand-alone policy that minimizes Eq. (1) is given

by the square root solution Qnc
i =

√
2λi(K + ki)/hi, from which company i will select the

integer value that minimizes its expected cost rate Cnc
i (note that when you plug in the square

root solution into Eq.(1) and compute the minimum costs of the stand-alone solution, it is

a lower bound of the best integer-valued solution). The total joint costs of the stand-alone

model is then the sum of each company’s stand-alone costs, or Cnc
N =

∑
i∈N

Cnc
i .

3.2 The collaborative model

If both companies set up a collaborative shipping agreement to share the same transport,

they need to adopt an inventory policy that synchronizes their replenishments. This can be

done by installing a joint replenishment policy within both companies. A natural extension

of the (Qi, si) policy is the can-order (Si, ci, si) joint replenishment policy.

The can-order policy for firm i is defined using three parameters Si > ci ≥ si. Any order

placed raises the inventory level up to its respective base-stock level Si. The company that

first reaches its reorder point is the one triggering the order – say it is i: so inventory-on-

hand Ii reaches its reorder point si while Ij > sj for j 6= i. Then i places an order of size

Qs
i = Si − si (we use superscript s for “self-initiated” and c for “collaborates”). The other

company j 6= i also replenishes (and joins the transport) if its inventory position Ij is at

or below its can-level cj; if Ij > cj , firm j has sufficient stock and will not join the order.

Hence, Qc
j = Sj − Ij if Ij ≤ cj and Qc

j = 0 if Ij > cj.

As discussed in our literature review, the can-order policy is a popular joint replenishment

policy that has a simple coordinated control rule, and it is shown to perform well in many
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settings. Moreover, we see three additional benefits adopting the can-order policy in a

collaborative shipping context. First, it allows placing joint orders, yet at the same time

maintains the flexibility for each company to place an individual order even when the other

company is not joining. Second, it allows for synchronization of orders without having to

reveal explicit demand information to the other shippers. Finally, as the can-order policy

has one additional degree of freedom compared to the (Qi, si) policy (if ci = si, the can-order

policy reduces to the (Qi, si) policy), the joint expected cost performance under collaboration

will never be worse than in the stand-alone model.

Let ηsi denote the expected number of self-initiated orders of company i, and ηci the

expected number of orders that company i joins company j’s replenishment. As such, the

expected costs of company i under collaboration are given by:

Ci(Si, ci, si) = Kηsi + ki (η
s
i + ηci ) + hiπi, (2)

and the total joint costs under collaboration is CN =
∑
i∈N

Ci(Si, ci, si). The values of Si

and ci (for zero lead times, we have si = 0) are set to minimize the expected joint costs of

the collaboration, CN . In the next section, we show how the expected cost performance of

company i can be derived for a given set of parameters (Si, ci). The optimal values of (Si, ci)

that minimize CN can then be found by an enumeration procedure.

The can-order policy may be implemented via a trustee (i.e., a central authority), who can

keep track of company inventory levels to ensure that joint orders are placed. The trustee not

only allows companies to keep their operating parameters private, but also makes sure that

the expected cost for the whole system is optimized. In addition, the trustee also manages

the allocation of the gains/costs in accordance with the selected allocation mechanism.

3.3 Individual cost performance under a can-order policy

We analyze the individual cost performance under collaboration by characterizing the re-

plenishment cycle under a can-order policy by a Markov process. Let (I1, I2) be the pair of

inventory levels that represent the state of the system at a given moment in time. A new

replenishment cycle starts at the base-stock level Si and a transition towards another state is

made upon demand arrival (with rate λi). The time spent in each state is identically and ex-

ponentially distributed with rate parameter λN = (λ1 +λ2). The company that first reaches

its reorder point si initiates a replenishment order and makes a transition to its base-stock

level Si. If at that moment Ij ≤ cj for company j 6= i, company j also replenishes, and a

transition is made to (S1, S2). Table 1 summarizes the possible state transitions and Table 2

illustrates the infinitesimal generator Z of the Continuous-Time Markov Chain (CTMC), for
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s1 = s2 = 0, c1 = 1, c2 = 2, S1 = 2, and S2 = 4.

Table 1: Summary of the possible state transitions in a can-order policy
Transition Transition Probability Conditions

(I1, I2)→ (I1 − 1, I2) λ1λ
−1
N I1 > s1 + 1

(I1, I2)→ (I1, I2 − 1) λ2λ
−1
N I2 > s2 + 1

(I1, I2)→ (S1, I2) λ1λ
−1
N I1 = s1 + 1 ∧ I2 > c2

(I1, I2)→ (S1, S2) λ1λ
−1
N I1 = s1 + 1 ∧ I2 ≤ c2

(I1, I2)→ (I1, S2) λ2λ
−1
N I2 = s2 + 1 ∧ I1 > c1

(I1, I2)→ (S1, S2) λ2λ
−1
N I2 = s2 + 1 ∧ I1 ≤ c1

Table 2: Infinitesimal generator of a can-order policy with s1 = s2 = 0, c1 = 1, c2 = 2,
S1 = 2 and S2 = 4

(I1, I2) (2,4) (1,4) (2,3) (1,3) (2,2) (1,2) (2,1) (1,1)
(2,4) −λN λ1 λ2 0 0 0 0 0
(1,4) λ1 −λN 0 λ2 0 0 0 0
(2,3) 0 0 −λN λ1 λ2 0 0 0
(1,3) 0 0 λ1 −λN 0 λ2 0 0
(2,2) 0 0 0 0 −λN λ1 λ2 0
(1,2) λ1 0 0 0 0 −λN 0 λ2
(2,1) λ2 0 0 0 0 0 −λN λ1
(1,1) λN 0 0 0 0 0 0 −λN

The infinitesimal generator Z has state-space dimension S1S2 × S1S2. Let z denote its

steady-state distribution (satisfying zZ = 0 with ze = 1, and e is a vector of ones). The

expected inventory level of each company is then given by:

π1 =

S1∑
i=s1+1

S2∑
j=s2+1

iz(i, j),

π2 =

S1∑
i=s1+1

S2∑
j=s2+1

jz(i, j). (3)

To determine each company’s transportation costs, we need to know how often a company

initiates and/or joins an order (resp. ηsi and ηci ). Using the flow-rate-equation method (Tijms,
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2003), we find that:

ηs1 =

S2∑
I2=1

λ1z(1, I2),

ηs2 =

S1∑
I1=1

λ2z(I1, 1),

ηc1 =

c1∑
I1=1

λ2z(I1, 1),

ηc2 =

c2∑
I2=1

λ1z(1, I2).

(4)

Using Eqs. (3-4), we can determine the expected transportation and inventory cost perfor-

mance of each individual company under collaboration when the can-order policy is used, as

defined in Eq. (2).

The reason why we can obtain exact results is that the proposed Markov chain under

two companies has S1×S2 states. In case of three companies, the state space of our Markov

chain increases to S1×S2×S3. For large values of Si, it becomes computationally intractable

to determine the steady-state distribution of the Markov chain. For instance, if S1 = S2 =

S3 = 50, the Markov chain has 125,000 states, and it is no longer possible to calculate the

steady-state distribution. This is the reason why most researchers have resorted to the use

of approximations to study systems that have more than 2 items, e.g. the decomposition

approach. Given that current collaborative shipping practices are conducted with only two

partners, we can use an exact solution approach.

There is no closed-form expression of the total cost function under a can-order policy

with non-negative major and minor transport costs, even with zero lead times. Only when

K = 0 or ki = 0, it can be analytically shown that the cost function is convex in Si (when

K = 0, we have ci = si = 0, and the can-order policy reduces to the (Q, s) policy, for which

its cost function Cnc
i is convex in Qnc

i ; when ki = 0, we have ci = Si− 1 and both companies

always place joint orders – Timmer et al. (2013) found that the cost function of this policy

is convex). Our numerical results revealed that the cost function appears to be convex in Si,

and/or ci. However, given that we are unable to prove the convexity of the cost function,

we use a full enumeration procedure, rather than (faster) search methods that exploit the

convexity of the cost function.

There are, however, some properties of the can-order policy, which will prove to be useful

when analyzing the benefits of collaboration.

Proposition 1. If two companies establish a coordination using a can-order policy, their

average order quantities will be lower or equal in the coordination than compared to the

stand-alone policy.

Proof. We use a similar proof as in Timmer et al. (2013, Theorem 1). Without loss of gener-

ality, consider i = 1. Assume that company 2 uses the same order quantity in coordination
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as in the stand-alone situation, i.e., Qs
2 = Qnc

2 . We distinguish between two possible scenar-

ios in which company 1 places an order. In a first scenario, company 2 initiates the order

and company 1 joins the order. In that case, company 1 has not reached its reorder level

yet, meaning that it has some remaining cycle inventory from its previous order. In order

to determine its optimal order quantity, company 1 will have to trade off its inventory costs

against the minor transportation costs. Compared to the stand-alone case, company 1 has

lower order costs and higher inventory holding costs (due to the remaining cycle inventory).

Therefore, according to the same logic applied in the well-known EOQ formula, company 1

will order at most Qnc
1 units. In a second scenario, company 1 initiates the order. In this

case, it is optimal to order Qnc
1 units. In both cases, company 1 orders at most Qnc

1 units.

Proposition 2. If two companies establish a coordination using a can-order policy, the

number of orders placed (self-initiated + joined) will be larger or equal in the coordination

than compared to the stand-alone policy.

Proof. Because no shortages are allowed, the demand is satisfied in the stand-alone case

by the total amount ordered: ηnci Q
nc
i . In the coordinated model, demand is fulfilled with

self-initiated and joint orders: ηsiQ
s
i +ηciQ

c
i . Then, by considering the “flow balance” of total

demand, we have:

ηsiQ
s
i + ηciQ

c
i = ηnci Q

nc
i ,

ηsi
Qs
i

Qnc
i

+ ηci
Qc
i

Qnc
i

= ηnci .

By design of the can-order policy with si ≤ ci < Si, we have Qc
i ≤ Qs

i . Then, in combination

with Proposition 1, we have that Qc
i/Qnc

i ≤ Qs
i/Qnc

i ≤ 1, so that ηsi + ηci ≥ ηnci .

Proposition 3. If two companies establish a coordination using a can-order policy, the

number of self-initiated orders for each individual company will be lower or equal in the

coordination compared to the number of orders placed in the stand-alone policy.

Proof. Using the flow balance of total demand, we have that ηsiQ
s
i + ηciQ

c
i = ηnci Q

nc
i . As

Qc
i ≥ 0 and ηci ≥ 0, we have:

ηsiQ
s
i ≤ ηnci Q

nc
i ,

ηsi
Qs
i

Qnc
i

≤ ηnci .

As Qs
i/Qnc

i ≤ 1 (see Proposition 1), we find that ηsi ≤ ηnci .
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4 Cost-sharing agreements

We start with a description of the game theoretic concepts and then proceed with the de-

scription of the allocation rules. A cooperative game with Transferable Utilities (TU game) is

a pair (N,X) characterized by two main factors: N = {1, 2, ..., |N |} the given set of players,

and X the characteristic function. Every non-empty subset U ⊆ N of cooperating players

is called a coalition. N is called the grand coalition. Further, the cost function X : 2N → R
assigns to any non-empty coalition U ⊆ N the minimal costs XU for the coalition if the

individuals in U cooperate without the players in N\U . For the empty coalition, it assumes

X(∅) = 0 and X({i}) = Xnc
i . The characteristic function can be interpreted as profits or

costs. A cost game can be converted into a cost-savings game with ν(XU) denoting the cost

savings or gains in XU , defined by:

ν(XU) =

(∑
i∈U

Xnc
i

)
−XU for all U ⊆ N. (5)

If N = 2, there is only one possible form of cooperation, i.e., the grand coalition. Then, both

players divide the coalition costs XN after some kind of bargaining process. In this article,

we assume four different sets of costs XN that can be redistributed, defined in Section 4.1.

The allocation ϕi ∈ R denotes the share of the coalition costs XN that is allocated to

player i. These shares should be computed in such a way that the vector ϕ = (ϕ1, ϕ2, ..., ϕ|N |)

allocates the coalition costs XN . We study allocation mechanisms based on simple propor-

tional rules and based on game theoretical concepts in Section 4.2.

As only the set of costs XN is redistributed, we refer to the costs that are not allocated

or redistributed under the agreement as “complementary costs”. We denote X{
i = Ci −Xi

the set of complementary costs of company i under collaboration, and X{,nc
i = Cnc

i −Xnc
i the

corresponding set of complementary costs of company i in the stand-alone model. Hence,

the total cost performance of company i after allocation of XN , which we denote by C̃i, is

then given by:

C̃i = ϕi +X{
i . (6)

4.1 Redistribution of the costs and gains

Collaboration has the objective to minimize the expected joint costs of both companies. The

parameters of the can-order policy are thus optimized to minimize the total joint costs CN =∑
i∈N

Ci, with Ci the expected costs of company i under collaboration, defined by Eq. (2).

However, even when the partnership provides gains, i.e., CN ≤ Cnc
N , it is critical that each
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individual company i has a lower cost performance in collaboration compared to its stand-

alone performance. Only when C̃i ≤ Cnc
i there is an incentive for company i to collaborate.

Therefore, an agreement is made to redistribute (a part of) the joint costs of the collaboration,

or to allocate (a part of) the collaboration gains to each company.

In most collaborative shipping partnerships, the focus is on allocating the gains in trans-

portation costs. However, to maximize the gains in transportation costs, the collaborating

partners are required to be flexible, and they have to replenish their inventories either sooner

or later than originally planned in order to benefit from joint transport. This may come at

the expense of increased inventories. As inventory costs are a sort of opportunity costs, they

are not measurable in the same way as transportation costs because they are not of the same

out-of-pocket character. In addition, they are often managed by a different department than

the transportation department. Hence, when a collaborative partnership is discussed among

transportation planners, its impact on inventories is often not taken into consideration, and

the primary focus is on (gains and allocations of) the transportation costs. Nevertheless,

although sharing inventory information may not be straightforward in practice, we will show

next that when the inventory costs are not taken into account, some companies may end up

thinking that they save costs, whereas actually they didn’t.

We consider the following cost agreements to redistribute the set of costs XN =
∑
i∈N

Xi

between the participating companies:

1. In a first type of cost agreement, there is no redistribution of the costs:

XN = 0. (7)

This means that the company placing the order (and organizing the transport), pays

for the transport, regardless of whether the other company joins or not. If the other

company joins the order, it is only paying its minor transport cost.

2. Both companies share the payment of the (joint) major transportation costs:

XN =
∑
i∈N

Kηsi . (8)

Under this agreement, each company still pays their own minor transport cost and

inventory holding costs.

3. As the benefits in joint major transportation costs are not possible without multi-stop

truckloads, companies may agree to share and redistribute the total transportation
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costs, which is the sum of both major and minor transportation costs:

XN =
∑
i∈N

(Kηsi + ki(η
s
i + ηci )) . (9)

In this case, the companies still pay for their own inventory costs.

4. Finally, companies may agree to share and redistribute all the logistics costs that are

impacted by the collaborative shipping:

XN = CN =
∑
i∈N

(Kηsi + ki(η
s
i + ηci ) + hiπi) . (10)

Table 3 gives an overview of company i’s set of costs Xi that are redistributed under each

agreement together with its set of complementary costs X{
i , and its equivalent set of costs

in the stand-alone model, Xnc
i and X{,nc

i .

Table 3: Set of costs under each agreement

Xnc
i X{,nc

i Xi X{
i

No redistribution 0 Cnc
i 0 Ci

Major transp Kηnci kiη
nc
i + hiπ

nc
i Kηsi ki(η

s
i + ηci ) + hiπi

Total transp (K + ki)η
nc
i hiπ

nc
i Kηsi + ki(η

s
i + ηci ) hiπi

Total logistics Cnc
i 0 Ci 0

We assume that each company provides its cost and demand information truthfully to a

central authority. Arguably, under significant misreporting, the collaboration may suffer a

substantial efficiency loss (we refer to Meca et al. (2003) and Körpeoğlu et al. (2012) who

investigate the role of information in the context of a non-cooperative reporting game). In

this article, we do not consider any information distortion. We assume that a neutral trustee

manages the collaboration process as a central authority designed to facilitate information

exchange and coordination efforts between companies (Gupta and Makowski, 2016).

4.2 Allocation mechanisms of the costs/gains

Once an agreement is made about which set of costs XN will be redistributed, the next

question is which allocation rule will then be used to redistribute these joint costs XN to

the partnering companies. In the literature, many sharing and cost allocation mechanisms

have been proposed. Some are based on simple proportional rules whereas others are based

on theoretical concepts found in game theory. A simple approach to allocate costs is to use
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a proportional allocation that can be based on individual indicators of each partner in the

collaboration. A more advanced approach is to use principles based on game theory.

Proportional methods redistribute the set of joint costs XN to each company i according

to a proportional rule: ϕi = ρiXN , where ρi denotes the proportion of the costs allocated

to company i. As only the set of costs XN are allocated, company i additionally carries its

complementary costs, X{
i (see Table 3). Hence, the total cost performance for company i

after allocation of XN , is then given by:

C̃i = X{
i + ρiXN ,

= Ci − ρjXi + ρiXj. (11)

In this article, we consider three proportional methods:

• Gerchak and Gupta (1991) propose to allocate the costs under a collaboration based

on the ratio of each company’s costs in the stand-alone model. We denote this rule the

“Linear rule”. The proportion of the costs XN that is allocated to company i under

the Linear rule, denoted by ρLi , is then:

ρLi =
Xnc
i∑

j∈N
Xnc
j

. (12)

The Linear rule is frequently used in the literature. The Linear rule coincides with the

gain-sharing rule provided by Moriarity (1975), who allocates the gains ν(XN), rather

than the costs XN , according to Eq. (12). It also coincides with the Equal Profit

Method (Frisk et al., 2010), and the Weighted Relative Savings Model (Liu et al.,

2010). In case of two identical companies, the cooperative gain-sharing mechanisms

also reduce to the Linear rule, where half the gains or half of the costs is allocated to

each company (Vanovermeire, 2014).

• Meca et al. (2004) introduce the distribution rule to allocate the (joint) major trans-

portation costs to each company according to the ratio of each company’s squared

order frequencies in the stand-alone model (ηnci ). Even when each company pays for

its own inventory costs, they show that this rule is stable, meaning that collaboration

will always reduce each company’s total (transportation + inventory) costs after allo-

cation according to the distribution rule. Note that in their analysis, there is no minor

transport cost. Whereas Meca et al. (2004) use this rule to distribute the major trans-

portation costs only, we adopt the rule to distribute the costs XN (with XN depending

on the type of agreement). We denote this rule the “Order rule”, and denote ρηi the
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proportion of XN that is allocated to company i under the Order rule:

ρηi =
(ηnci )2∑

j∈N

(
ηncj
)2 . (13)

• Finally, we extend the distribution rule to allocate the joint costs based on the ratio

of its respective squared stand-alone costs Xi. We denote this rule the “Square rule”.

Denote ρSi the proportion of the costs XN that is allocated to company i under the

Square rule:

ρSi =
(Xnc

i )2∑
j∈N

(
Xnc
j

)2 . (14)

Under the agreement where only the major transportation costs are shared, the Square

rule reduces to the Order rule.

Game theoretical concepts typically have a higher complexity. However, if only two

companies participate in the collaboration, the cooperative game theory mechanisms all

result in the same allocation, known as the standard solution (Aumann and Maschler, 1985),

where the gains of the collaboration ν (XN) are divided in two equal parts. If half of the gains

in XN is allocated to company i, company i’s costs are reduced from Xnc
i to Xnc

i − 1
2
ν (XN),

and additionally, it carries its complementary costs X{
i . Hence, the total cost performance

for company i after gain allocation is given by:

C̃i = X{
i +

[
Xnc
i −

1

2
ν (XN)

]
,

= Cnc
i − ν

(
X{
i

)
− 1

2
ν (XN) , (15)

as Xnc
i = Cnc

i −X
{,nc
i , and X{,nc

i −X{
i = ν

(
X{
i

)
.

4.3 Conditions for a successful collaboration agreement

The set of costs XN considered in the collaboration agreement should be entirely distributed,

or all gains in XN should be shared. In addition, to ensure a successful collaboration, the

following three axioms must be satisfied after allocation of the costs/gains in XN :

Axiom 1. Subadditivity: The cost function X is subadditive if:

X(U1 ∪ U2) ≤ X(U1) +X(U2) for all U1, U2 ⊆ N with U1 ∩ U2 = ∅. (16)
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A cooperative game is called concave if: X(U1) + X(U2) ≥ X(U1 ∪ U2) + X(U1 ∩ U2)

for U1, U2 ⊆ N . In a two-player game, X(∅) = 0, and the definition of concavity implies

subadditivity as defined in Axiom 1. Also, in a two-player game the axiom of subadditivity

reduces to XN ≤ Xnc
i + Xnc

j , or ν(XN) ≥ 0. Clearly, if the property of subadditivity does

not hold, there is no reason to cooperate.

Axiom 2. Core allocation: An allocation of the costs XN should be in the core of the game

Core(N,X), which consists of those allocations of XN that satisfy:

Core(N,X) = {ϕ ∈ RN :
∑
i∈N

ϕi = XN and
∑
i∈U

ϕi ≤ XU for all U ⊂ N}. (17)

A core allocation ϕ ∈ Core(N,X) is efficient and it satisfies the individual rationality

property with U = {i}, which is defined by ϕi ≤ X{i} for all i ∈ N . If for two companies

XN < Xnc
1 +Xnc

2 , the two-company replenishment game is concave and the core

Core(N,X) = {ϕ ∈ R2 : ϕ1 + ϕ2 = XN , ϕ1 ≤ Xnc
1 , ϕ2 ≤ Xnc

2 } (18)

is a non-empty set.

We finally define the axiom of stability. In game theory terminology, the term “stable”

refers to an element of the Core. However, given that the redistributed coalition costs XN do

not necessarily coincide with the total coalition costs CN , we define stability as ‘the condition

where the cost performance in collaboration after redistribution of XN is better compared

to the cost performance in stand-alone.’

Axiom 3. Stability: After allocation of the costs/gains, each company should be able to

reduce its total cost performance:

C̃i ≤ Cnc
i . (19)

Satisfying stability implies that the benefits are obtained at the level of the individual total

cost performance, and not only the costs considered in the cost-sharing agreement. Hence,

a given allocation mechanism may be individually rational for a given set of costs XN , but

not stable when the complementary losses outweigh the collaboration gains in XN .

5 Results

Through an extensive numerical experiment for a range of cost and demand parameters

we study the aforementioned allocation mechanisms and check if they belong to the core,

meaning that its allocated costs are lower than its equivalent in the stand-alone model. For
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each type of cost-sharing agreement under the different allocation mechanisms, we also verify

if stability is satisfied when the can-order policy is used to bundle orders, indicating whether

its total logistics cost performance in collaboration (after allocation of the costs) is better

than in the stand-alone model. In what follows, we first discuss the design of our experiment.

In Section 5.2 we provide an illustrative example to understand the dynamics of the cost

performance and the cost allocation under the different agreements, and in Section 5.3 we

report on the results of the numerical experiment itself.

5.1 Design of the experiment

In our numerical experiment, we evaluate three different runs with varying combinations of

major transport cost K, minor transport costs ki, holding cost hi, and different combinations

of demand λi. Our parameters were selected similar to those used in the numerical tests in

van Eijs (1994). Table 4 provides a detailed overview of the parameter values used. For each

run we have 6 (K) × 5 (ki) × 3 (λ1) × 1 (λ2) × 3 (h1) × 3 (h2) = 810 instances, which gives

a total of 2430 instances. However, in run 1 and 3, 162 identical instances are generated.

We exclude these identical instances and report only on the 2268 = 2430− 162 instances.

Table 4: Experimental setup of the computational experiment
Run K k1 k2 λ1 λ2 hi

1 {0, 25, 50, 75, 100, 125} {10, 20, 25, 30, 40} 50− k1 {5, 10, 15} {15} {3, 4, 5}
2 {0, 25, 50, 75, 100, 125} {5, 10, 12.5, 15, 20} 25− k1 {5, 10, 15} {15} {3, 4, 5}
3 {0, 25, 50, 75, 100, 125} {10, 20, 25, 30, 40} k1 {5, 10, 15} {15} {3, 4, 5}

5.2 Illustrative example

In Table 5 we illustrate for a specific setting the optimal inventory parameters for the stand-

alone (Qi, s) policy and for the (Si, ci, si) can-order policy under collaboration. Table 5 also

reports on the respective expected inventory levels of each company (πi), the number of

self-initiated orders (ηsi ), and the number of joint orders (ηci ) under collaboration.

With the parameters reported in Table 5 we can quantify the cost performance of each

company in the stand-alone scenario (using Eq. (1)) and in the collaborative setting (using

Eq. (2)). For two specific K-values, Table 6 shows the major transportation costs (Major),

the total (major + minor) transportation costs (Transp), and the total logistics (transporta-

tion + inventory) costs (Total). We can see that the resulting set of costs under collaboration

for each company is smaller than the respective set of costs in their stand-alone operations.
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Table 5: Optimal inventory parameters for k1 = 10, k2 = 40, h1 = 5, h2 = 3, λ1 = λ2 = 15
K Q1 Q2 S1 c1 S2 c2 π1 π2 ηs1 ηs2 ηc1 ηc2
0 8 20 8 0 20 0 4.5 10.5 1.875 0.750 0.000 0.000
25 14 25 14 6 24 5 7.8 13.0 0.874 0.427 0.262 0.227
50 19 30 19 13 22 9 10.7 12.6 0.545 0.344 0.333 0.433
75 23 34 22 16 24 13 12.2 13.9 0.452 0.295 0.295 0.434
100 26 37 24 19 26 15 13.3 15.0 0.414 0.268 0.268 0.405
125 28 41 26 21 28 17 14.3 16.1 0.379 0.247 0.247 0.376

Table 6: Cost performance for k1 = 10, k2 = 40, h1 = 5, h2 = 3, λ1 = λ2 = 15
Company 1 Company 2

K Major Transp Total Major Transp Total

Stand-alone (Q, s)
25 26.8 37.5 75.0 15 39 78.0
125 67.0 72.3 144.8 45.7 60.4 123.4

Collaborative (S, c, s)
25 21.8 33.2 72.2 10.7 36.8 75.7
125 47.4 53.6 125.1 30.9 55.9 104.0

We now analyze each company’s cost performance after allocation of the costs XN ac-

cording to the allocation rules described in Section 4.2. Table 7 shows the proportions ρi

of the costs allocated to company i under the different cost agreements according to the

Linear rule (L), the Order rule (η), and the Square rule (S) using Eqs. (12-14). Table 7 also

shows the resulting costs allocations ϕi for these same rules and for the game theoretical

approaches (ϕG) using respectively Eq. (11) and (15). In this example, we find that all

approaches are individually rational, except for the Order rule when the total transportation

costs or the total logistics costs are shared. For instance, for K = 25 the total logistics cost

in stand-alone of company 1 equals 75 (see also Table 6), whereas if the Order rule is used to

allocate the total logistics costs, the cost performance of company 1 in collaboration equals

112.6. As a result, this allocation method under this agreement fails the axiom of individual

rationality and does not belong to the core.

Table 8 shows the total cost performance C̃i after allocation of XN , taking the comple-

mentary costs into account. We see that the Order rule fails to be stable under all cost

agreements and the Square rule fails the axiom of stability when the major transportation

costs are shared. Observe that for K = 25 the Order rule is individually rational when the

major transportation costs are shared, but it fails the axiom of stability as the total logistics

cost for company 1 equals 75.1, which is slightly higher than in stand-alone. In this case,

the reduction in major transportation costs are offset by the increase in minor order costs

and inventory holding costs.
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Table 7: Proportions and allocated costs for k1 = 10, k2 = 40, h1 = 5, h2 = 3, λ1 = λ2 = 15.
∗ indicates that the allocation mechanism fails to be individually rational.

Company 1 Company 2
K Major Transp Total Major Transp Total

ρL
25 0.641 0.490 0.490 0.359 0.510 0.510
125 0.594 0.545 0.540 0.406 0.455 0.460

ρη
25 0.761 0.761 0.761 0.239 0.239 0.239
125 0.682 0.682 0.682 0.318 0.318 0.318

ρS
25 0.761 0.480 0.480 0.239 0.520 0.520
125 0.682 0.589 0.579 0.318 0.411 0.421

ϕL 25 20.8 34.3 72.5 11.7 35.7 75.4
125 46.5 59.7 123.7 31.8 49.8 105.4

ϕη
25 24.7 53.3∗ 112.6∗ 7.8 16.7 35.3
125 53.4 74.7∗ 156.3∗ 24.9 34.8 72.9

ϕS
25 24.7 33.6 71.0 7.8 36.4 76.8
125 53.4 64.5 132.8 24.9 45.0 96.4

ϕG
25 22.1 34.3 72.4 10.4 35.8 75.4
125 49.8 60.7 125.3 28.5 48.8 103.8

Table 8: Cost performance after allocation for k1 = 10, k2 = 40, h1 = 5, h2 = 3, λ1 = λ2 =
15. ∗indicates that the cost performance under collaboration is higher than in stand-alone.

Company 1 Company 2
K Major Transp Total Major Transp Total

C̃L 25 71.2 73.3 72.5 76.7 74.6 75.4
125 124.3 131.1 123.7 104.9 98.0 105.4

C̃η 25 75.1∗ 92.3∗ 112.6∗ 72.8 55.6 35.3
125 131.1 146.1∗ 156.3∗ 98.0 83.0 72.9

C̃S 25 75.1∗ 72.6 71.0 72.8 75.3 76.8
125 131.1 136.0 132.8 98.0 93.1 96.4

C̃G 25 72.5 73.2 72.4 75.4 74.6 75.4
125 127.5 132.2 125.3 101.6 96.9 103.8
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5.3 Computational experiment

Table 9 reports for our entire numerical test set of 2268 instances the minimum and maximum

relative gains of collaboration compared to the stand-alone case, measured by ν(XN )
Xnc

i
× 100.

The higher the value of K, the higher the savings in the joint major transportation costs,

the joint total transportation costs, and the joint total logistics costs (although not reported,

the gains in joint inventory costs also increase for higher K-values).

Table 9: Percentage gains of the joint cost performance under collaboration

Major Transportation Total Transportation Total Logistics
Costs Costs Costs

K Instances min max min max min max
0 378 0 0 0 0 0 0
25 378 10.79 34.72 -1.27 17.95 1.38 9.20
50 378 17.84 37.03 4.33 20.71 3.72 14.26
75 378 16.21 36.85 5.41 22.75 5.63 16.65
100 378 18.15 35.98 6.50 24.12 7.19 18.09
125 378 22.75 34.14 12.66 24.44 8.70 19.06

We find that the axiom of subadditivity always holds when the major transportation

costs are shared, or when the total logistics costs are shared, indicating that under those

agreements there are always gains in XN . Indeed, following Proposition 3, the number of

self-initiated transports for which a major transport cost is incurred is lower compared to the

stand-alone model. Thus, when only the major transportation costs are shared, the set of

gains ν(XN) = K
∑
i∈N

(ηnci − ηsi ) is always positive. Subadditivity is also satisfied when total

logistics costs XN = CN are shared, because the can-order policy has an additional degree of

freedom compared to the stand-alone (Q, s) policy, and as a result, the joint policy always

performs better. The axiom of subadditivity is violated in 3 (out of 2268) instances when

the total transportation costs are shared. More in-depth analysis reveals that this occurs

when the ratio of major over minor transport costs is very low, in which case companies are

most likely not even seeking any collaboration opportunities.

Furthermore, we find that the maximum gains are found in the joint major transportation

costs. For instance, when K = 25 the gains in joint major transportation costs range between

10.79% and 34.72%. Hence, it is appealing to focus on these savings in the agreement,

but in these cases, the complementary losses are also the largest. We found 129 (out of

2268) instances where the joint inventories increased under collaboration; the smaller the

value of K, the higher the likelihood that inventories increase. In contrast, when the total

logistics costs are shared, the gains may at first sight seem lower (e.g., for K = 25 the gains
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range between 1.38% and 9.20%), but in this case, there are no complementary losses (nor

complementary gains).

When we analyze the individual cost performance of each company under collaboration

prior to redistribution of the costs, Ci, we obtain similar results. In general, we find that:

• The major transportation costs for each company are always lower than in the stand-

alone model. On the other hand, its minor transportation costs are always higher

compared to the stand-alone model. The total (of major and minor) transportation

costs may increase or decrease compared to its stand-alone performance, depending

on the value of K and ki. The higher the major transport cost K, the higher the

individual savings, and also the higher the likelihood that each company gains in total

transportation costs.

• Each company’s individual inventory costs may increase or decrease compared to the

stand-alone model. Also here, the gains (and the likelihood of a positive gain) in

inventory holding costs increase with larger values of K.

• The total logistics cost performance of each company will always improve in collabo-

ration compared to the stand-alone model. The total cost savings will be higher for

larger values of K.

These results can be explained by the dynamics of the can-order policy. Following Propo-

sitions 2-3, the number of self-initiated orders under collaboration is smaller than the number

of orders placed in the stand-alone model (ηsi ≤ ηnci ), but the total number of replenishment

orders increases compared to the stand-alone model (ηsi + ηci ≥ ηnci ). This explains the in-

crease in minor transportation costs (and a potential increase in total transportation costs)

under collaboration. The impact of the can-order policy on inventories is two-fold: on the

one hand, decreasing order quantities result in lower base-stock levels and hence a decrease

in cycle inventories. However, if ci ≥ si, the probability of having inventory levels lower than

ci, decreases, and the inventory distribution is no longer uniform over Ii ∈ [si, ci[, leading to

average inventory levels higher than Si−si+1
2

. As a result, the impact of the can-order policy

on inventory is a mixed effect and can be both positive or negative.

Table 10 reports how many times an allocation mechanism fails to be in the core of

the game for the 2268 instances in our numerical experiment. For each of the cost-sharing

agreements, we report how often the allocated costs ϕi to company i is higher than its

comparable stand-alone performance Xnc
i . We denote these results in Table 10 as [x1 x2]

with x1 the results for company 1 and x2 the results for company 2. In general, we find that

not only the game theoretic gain-sharing mechanisms (which satisfy individual rationality by
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definition), but also the Linear rule belong to the core of the game in all test instances. When

the major transportation costs are shared, the Order rule (which is in that case identical

to the Square rule), fails to be in the core of the game in 16 out of 2268 instances tested.

More specifically, we find that this coincides with the instances where the demands of both

companies are not identical. In addition, we see that, the larger the discrepancy between

both companies, the more likely that Axiom 2 fails. When more costs are shared (i.e.,

including minor and/or inventory costs), we find that both the Order rule and the Square

rule fail to provide a core solution more often, both for identical and non-identical demands.

Table 10: Number of times an allocation mechanism fails to be in the core of the game
Cost-sharing agreement Game theory Linear rule Order rule Square rule

(XN) (G) (L) (η) (S)
Major transportation costs [0 0] [0 0] [0 16] [0 16]
Total transportation costs [0 0] [0 0] [234 773] [125 748]

Total logistics costs [0 0] [0 0] [277 1041] [160 1029]

We finally evaluate each company’s total logistics cost performance, C̃i, under collabora-

tion after allocation of the costs/gains in XN and compare it to its stand-alone costs, Cnc
i .

Only when C̃i ≤ Cnc
i , the collaboration is stable. Recall that the total costs of company i

include the allocated costs ϕi, as well as its complementary costs X{
i . Hence, a collaboration

may be individually rational but not stable when the losses in X{
i outweigh the gains in XN .

Table 11 reports for the 2268 instances of our numerical experiment how often the ax-

iom of stability is not satisfied for each company for each cost-sharing agreement and each

allocation mechanism. Based on these results, we can make the following observations.

Table 11: Number of times the axiom of stability fails for company i
Cost-sharing agreement Game theory Linear rule Order rule Square rule

(XN) (G) (L) (η) (S)
No cost sharing [0 0] [0 0] [0 0] [0 0]

Major transportation costs [0 0] [7 0] [1 67] [1 67]
Total transportation costs [1 1] [8 2] [226 749] [124 694]

Total logistics costs [0 0] [0 0] [277 1041] [160 1029]

First, we observe that when no costs are redistributed, the axiom of stability is always

satisfied: under collaboration, each company will always reduce its costs compared to the

stand-alone model, even when no costs are redistributed. This result is interesting, as it

represents the “easiest” type of agreement. It could be argued whether this type of agreement
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is considered to be fair to both participating companies, as it means that you never have

to pay for joining the vehicle of your coalition partner, but it clearly does lead to a stable

collaboration where each company wins.

Second, as more costs are shared, the stability (and thus the success) of the collaboration

is very sensitive to the allocation mechanism. The game theoretic gain-sharing approaches

clearly dominate, yet they are not perfect. In our experiment we find that the collaboration

is not stable in two instances (one per company) when the gains in the total transportation

costs are shared. In those cases, the increase in inventory holding costs for an individual

company outweigh its gains in total transportation costs.

The Linear rule always satisfies the axiom of stability when the total logistics costs are

shared. In that case, a core allocation is stable, and the Linear rule leads to a stable col-

laboration. However, when only the transportation costs are shared, the Linear rule still

performs very well, but it does not always lead to a win-win situation for both companies.

After allocation, there are some instances where the companies perceive a gain in transporta-

tion costs, but they incur losses due to increased inventory holding costs, which are larger

than the savings in transportation costs.

Finally, the Order rule and the Square rule fail to be stable in many instances when the

major transportation costs, the total transportation costs, or the total logistics costs are

shared. In general, we found that as the value of K increases, the axiom of stability is more

likely to be satisfied under these rules.

6 Conclusions

In current supply chain networks, transport makes up for a large part of the total logistics

costs. Next to a financial impact, transport also gives rise to significant external costs for the

environment and for society (e.g., increased carbon emissions, more traffic, etc.). To reduce

both financial and environmental costs, companies today face huge pressure to increase

their transport efficiency. After optimizing internally, companies now look for opportunities

beyond their own walls, by setting up partnerships with other companies for instance. By

bundling shipments with other partners, available space in vehicles used for one company

can be used to transport shipments for other companies.

In this article, we studied the setting where two companies set up a collaborative shipping

agreement to share the same transport vehicle. The shipments are synchronized by jointly

replenishing inventories using the can-order policy. We have assessed how this synchroniza-

tion impacts transportation and inventory holding costs, both at the level of the coalition as

well as for each company individually. The individual cost performance under the can-order
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policy was evaluated using a Markov chain approach. The parameters of the can-order policy

of both companies were optimized to minimize the total joint costs of both companies.

We find that collaboration always leads to a reduction in each company’s major trans-

portation costs, but also to an increase in their minor transportation costs. This flexibility

may also require companies to keep higher inventories. However, we find that when a com-

pany experiences losses in inventories (resp. transport), the gains in transport (resp. invento-

ries) will always outweigh these losses (it also means that a company never experiences losses

in inventory and transportation costs simultaneously). In other words, each company always

improves its cost performance under collaboration, even where there is no redistribution of

the costs.

When the joint costs are redistributed, we can make use of cooperative game theoretic

approaches (allocating half of the collaboration gains to each company) or proportional

cost-allocation rules (which partition the joint cost under the collaboration based on a given

indicator). When only the joint major transportation costs are shared, the Linear rule

(allocating the joint costs proportionally to its respective stand-alone costs) leads more often

to a stable collaboration than the Order rule (which allocates the joint costs proportionally

to the squared number of orders placed in the stand-alone model). However, stability is not

always guaranteed. The same holds when the total (minor and major) transportation costs

are shared. This means that it may occur that after redistribution of the joint transportation

costs, a company perceives gains in its transportation costs, but the collaboration increases

its inventory holdings, which may even outweigh its transportation gains.

When all joint logistics costs are shared (i.e., both transportation and inventory costs), the

Linear rule always leads to a stable coordination, but the Order and Square rule (allocating

the joint costs based on the ratio of its respective squared stand-alone costs) often do not.

The game theoretic gain sharing approaches (allocating half of the gains to each company)

almost always lead to a stable solution, regardless of which costs are shared (we only found

two instances where stability was not met when the total transportation costs were shared).

We conclude that, before redistribution, the total logistics costs of each company under

collaboration are always smaller than (or equal to) those of the stand-alone setting. After

redistribution, however, it is possible that the shipping agreement does not lead to a win-win

situation because an improper choice was made with respect to the redistribution mechanism

and/or the set of costs to redistribute. In this research, we have not only shown that

these choices are of extreme importance, but we have also shown under which conditions a

particular choice has to be made in order to ensure a stable shipping agreement.

As our findings strongly depend on the use of the can-order policy to synchronize orders,

future research directions could focus on the use of other joint replenishment policies, like for
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instance the periodic (s, S) policy (Viswanathan, 1997). Another avenue for future research

is the investigation of the impact of information distortion on the stability of the collaborative

shipping agreement. Companies may have an incentive to misreport their true parameters

when simple allocation rules are employed, which may reduce the benefit from or even

prohibit information sharing in supply chains. These non-obvious model extensions are full

research projects themselves.
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Körpeoğlu, E., Şen, A., and Güler, K., 2012. A private contributions game for joint replen-

ishment. Mathematical Methods of Operations Research, 75(1):67–82.

Liu, P., Wu, Y., Xu, N., et al., 2010. Allocating collaborative profit in less-than-truckload

carrier alliance. Journal of Service Science and Management, 3(1):143–149.

28

http://dx.doi.org/10.1016/j.ejor.2017.05.013
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2017.05.013 • www.stefancreemers.be • info@stefancreemers.be
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Vanovermeire, C., Sörensen, K., Van Breedam, A., Vannieuwenhuyse, B., and Verstrepen,

S., 2014. Horizontal logistics collaboration: decreasing costs through flexibility and an

adequate cost allocation strategy. International Journal of Logistics: Research and Appli-

cations, 17(4):339–355.

Viswanathan, S., 1997. Note. periodic review (s, S) policies for joint replenishment inventory

systems. Management Science, 43(10):1447–1454.

Zhang, J., 2009. Cost allocation for joint replenishment models. Operations Research, 57(1):

146–156.

30

http://dx.doi.org/10.1016/j.ejor.2017.05.013
http://www.stefancreemers.be
mailto:info@stefancreemers.be

	Introduction
	Related Literature
	Inventory control model
	The stand-alone model
	The collaborative model
	Individual cost performance under a can-order policy

	Cost-sharing agreements
	Redistribution of the costs and gains
	Allocation mechanisms of the costs/gains
	Conditions for a successful collaboration agreement

	Results
	Design of the experiment
	Illustrative example
	Computational experiment

	Conclusions

