
doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

Evaluation of appointment scheduling rules: A

multi-performance measurement approach

Stefan Creemers
Marc Lambrecht

Jeroen Beliën
Maud Van den Broeke

Abstract - Appointment scheduling rules are used to determine when a cus-
tomer is to receive service during a service session. In general, appointment
scheduling rules do not consider the sequencing of individual customers, but
provide simple guidelines on how to assign appointment times to a set of (arriv-
ing) customers. Many appointment scheduling rules exist and are being used in
practice (e.g., in healthcare and legal services). Which appointment scheduling
rule is best, however, is still an open question. In order to answer this question,
we develop an analytical model that allows to assess the performance (in terms
of customer waiting time, server idle time, and server overtime) of appointment
scheduling rules in a wide variety of settings. More specifically, the model takes
into account: (1) customer unpunctuality, (2) no-shows, (3) service interruptions,
and (4) delay in session start time. In addition, we allow the use of general dis-
tributions to capture system processes. We adopt an efficient algorithm (with
respect to computational and memory requirements) to assess the performance
of 314 scheduling rules and use data envelopment analysis to identify the rules
that have good, robust performance in a wide variety of settings.

Keywords - OR in health services, appointment scheduling rules, Markov chain,
data envelopment analysis

1 Introduction

Professionals in health care and other services face the problem of allocating time windows to
customers. This allocation can be done by means of Appointment Scheduling Rules (ASRs).
ASRs determine when a customer is to receive service during a service session. Although
the literature on ASRs is mainly focused on health care (e.g., in an emergency department,
a doctor’s office, or an operating theater), the research topic is generic and applicable in
many industries: attorneys, faculty receiving students, tax accountants, consultants, barbers,
service centers, trailers at receiving bays, and many others.

With increasing customer expectations on being served quickly, both in health care and
in other service industries, timeliness of appointments is crucial (Grote, Newman, & Sutaria,
2007; Hall, 2012).Moreover, timely delivery of care has been shown to reduce mortality
and morbidity associated with a variety of medical conditions (Smart & Titus, 2011). The
customer waiting time consequently is a relevant performance measure. A second important
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objective of appointment scheduling has to do with the efficiency of the service. For private
companies, the impetus to efficiency comes naturally. However, health care systems are under
pressure to use their capacity effectively and efficiently (Hall & Partyka, 2016). Doctors’ (or
more general servers’) idle time and overtime are hereby important performance measures.
In addition, a distinction needs to be made between private healthcare institutions (who
may focus more on patient waiting time) and public care systems (where taxpayer money
needs to be spent as efficiently as possible).

The literature on appointment system design can broadly be divided into two classes.
In the first class the objective is to give individual patients a fixed appointment time, that
means, we have to decide on the order the appointments will be scheduled. It comes down to
a sequencing decision. Patient class information will be used for sequencing purposes. In the
second class of studies, authors try to find the best appointment rule. Here we have to decide
on the length of the appointment intervals (fixed or variable) and the block sizes (number
of patients scheduled to each appointment slot, individual or multiple). In this case, patient
information such as no-shows, patient unpunctuality and other disrupting factors are taken
care of by adjusting the appointment intervals and/or the block sizes. In this article, we
focus on the second class, namely on ASRs but in a complex environment characterized by
unpunctuality, no-shows, and server lateness. In literature there is a debate on the question
which approach is best, sequencing or appointment rules. We opt for appointment rules
because we believe that ASRs will perform more robustly in complex environments. Cayirli,
Veral, & Rosen (2008), who combine both approaches, clearly mention that sequencing-
based appointment systems are less flexible than those that assign patients on a first-call,
first-appointment basis. They continue the argument by stating that the biggest challenge
for future research will be to find new appointment systems that will perform more robustly
across different clinical environments and patient panels. We position our paper in the ASR
literature, and focus on identifying good ASRs that have robust performance in a variety of
settings. Of course, we fully appreciate the work done by authors focusing on sequencing.
We refer to the excellent paper of Deceuninck, Fiems, & De Vuyst (2018). Their approach
allows to take prior individual knowledge about the patients into account. If such information
is available and correctly exploited, the sequencing approach may lead to substantial cost
reductions.

The objective of this article is to identify ASRs that simultaneously minimize customer
waiting time, server idle time, and overtime. This has to be done in an environment where
both demand and supply characteristics are highly uncertain, and subject to many sources
of variability. For this purpose, we develop an analytical model to determine the best ap-
pointment policy under a wide range of assumptions. In contrast to most of the literature
(e.g., Jerbi & Kamoun, 2011; Lee, Min, Ryu, & Yih, 2013), we do not rely on simulation but
use a Discrete-Time Markov Chain (DTMC) to model the Appointment System (AS).

ASRs determine the planned (scheduled) arrival rate of customers during a service session.
The actual arrival time may differ from the planned arrival time. Therefore, we assign each
customer a probability of being too late or too early. In addition, we assign each customer a
probability of not showing up. Because of the no-show problem (i.e., customers not showing
up for their appointment), the actual number of customer arrivals is unknown, even if the
number of customers per session is fixed and predetermined. The performance of ASRs
is not only influenced by the arrival rate and service rate characteristics. Other types of
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outages during the service session are also important. We therefore allow for delays at the
start of a service session due to late arrival of a server, or due to setup activities at the start
of a session. We also allow preemptive and non-preemptive interruptions during the service
session (e.g., it is well known that scheduled appointments can be disrupted by emergencies).
All these extensions allow us to model real-life appointment systems, and to identify ASRs
that have a robust performance across different settings.

We develop an analytical model that uses an efficient (in terms of computational and
memory requirements) algorithm to assess the performance of ASRs. The validity and
accuracy of the model are supported by a simulation study. We use the model to assess the
performance of a set of 314 ASRs in an elaborate computational experiment. To compare
the performance of these ASRs (in terms of waiting time, idle time, and overtime), we apply
Data Envelopment Analysis (DEA).

The contribution of this article is threefold:

1. We develop a new analytical model to assess the performance of an ASR in a general
setting.

2. We perform an elaborate computational experiment to analyze the performance of a
large number of ASRs. As such, we provide insight in what ASR is best in a given
environment. This analysis is particularly useful for smaller general practices and
hospitals that don’t have the time/resources to optimize their appointment system. We
also confirm, and unify, the findings of several other studies in the field of appointment
scheduling.

3. We use DEA to identify the best ASR based on multiple performance measures. The
use of DEA in appointment scheduling is novel and allows to overcome limitations of
traditional approaches that require to fix subjective weights for different objectives
(i.e., waiting time, idle time, and overtime). As a non-parametric method, DEA does
not require to specify weights (i.e., it allows for a fair comparison of ASRs). DEA also
offers tools to measure the robustness of the decision rules, we refer to the Maverick
score that is used in this paper.

We also provide a number of important managerial insights. The first insight is that
simple individual ASRs, like the Bailey-Welch rule, perform very well, certainly in the case
where only a small number of customers needs to be scheduled. Secondly, we find that
Variable Interval (VI) (or dome-shaped) ASRs are among the best performing ASRs and
that their performance is robust over complex and dynamic environments. This means these
VI ASRs are recommended in AS where the environmental variables are prone to change.
The third important insight is that the relative performance of ASRs drastically changes
when waiting time becomes more important. Thus, if customer waiting time is a crucial
factor for success (and more relevant than overtime or idle time), managers may want to
consider an ASR that results in smaller waiting times, even if this results in more idle
time and/or overtime. Finally, our results suggest that it is not necessary to update good
performing ASRs after a change in customer punctuality as we found that the performance
of ASRs does not depend heavily on customer punctuality.

This article is organized as follows. Section 2 provides a description of the problem setting.
The literature on appointment systems is discussed in Section 3. Section 4 defines the basic
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processes that govern the appointment system, and Section 5 presents the basic model. The
design and the results of the computational experiment are discussed in Section 6. Section 7
concludes.

2 Problem Description

ASRs are used to schedule the servicing of a given number of customers during a service
session. Complexity is introduced in the form of so-called “environmental factors”. An
extensive overview of such environmental factors is provided in Cayirli & Veral (2003), Gupta
& Denton (2008), and Ahmadi-Javid, Jalali, & Klassen (2017). In this article, we take the
following factors into account:

• Customers are allowed to arrive early or late (“customer unpunctuality”), or may even
fail to show up.

• Each customer has a unique arrival process characterized by (1) a probability to show
up, (2) probabilities to arrive early or late, and (3) distributions to model the amount
of time a customer arrives early or late.

• The start of a service session may be delayed due to the absence or lateness of staff,
the setup of equipment, etc.

• The service process of a customer may be interrupted (e.g., a doctor who is called
away for an emergency). We allow for both preemptive interrupts and non-preemptive
interrupts.

In what follows, we assume that:

• Only one customer can be served at the same time (i.e., customers are served by a
single server).

• Customers have i.i.d. service time distributions.

• All customers that arrive during the service session are served.

• Customers that arrive early (i.e., prior to their scheduled arrival time) receive service
if the server is idle, note that this implies the possibility of overtaking other customers
who arrive late.

Note that, in this study, we do not classify customers into distinct groups (see for instance
Bhattacharjee & Ray, 2016; Cayirli & Yang, 2014; Sickinger & Kolisch, 2009).

We use an example to illustrate the dynamics of an ASR. Figure 1 provides visual support.
Suppose we have a service session that starts at 12 AM. Assume we schedule customers
using an ASR with an initial block of one customer. More specifically, we schedule the first
customer to arrive at the start of the service session. The other customers are scheduled
to arrive at 2 PM and at 4 PM, respectively. Their expected service time requirement is
2 hours. In the example, the first customer arrives on time, but the server is 15 minutes
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Figure 1: Dynamics of the appointment system.

late, resulting in 15 minutes waiting time for customer 1. Customer 2 arrives 15 minutes
early. As the server is still serving customer 1, however, the waiting time for customer 2 is
30 minutes. The service time of customer 2 takes 15 minutes less than expected (i.e., it takes
1 hour and 45 minutes), which means serving customer 2 is finished at 4 PM. The third
customer, expected at 4 PM, is 30 minutes late, leading to 30 minutes of server idle time
(regular operating costs such as staff wages and equipment costs are still incurred). Because
service starts immediately upon entry of the third customer, customer 3 has no waiting time.
As such, the average waiting time of a customer amounts to 15 minutes. The service session
of customer 3 takes 15 minutes longer than expected (i.e., 2 hours 15 minutes instead of
2 hours), resulting in an overall server overtime of 45 minutes (at which point additional
costs such as penalties or staff compensation might be incurred). The duration of the service
session then equals 6 hours and 45 minutes.

The performance measures of interest are: (1) the expected waiting time of a customer,
(2) the expected amount of time that the server resides in an idle state, and (3) the expected
amount of server overtime. Our model can provide these performance measures for any given
schedule of customers (i.e., the outcome of any given ASR or scheduling procedure). We use
DEA to identify the optimal set of weights attached to the aforementioned measures for
each ASR individually. Moreover, we allow prioritization of certain performance measures
(e.g., customer waiting time) by incorporating additional constraints in the DEA. This is
also referred to as subjective valuation of performance measures.
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3 Literature Review

Appointment systems have been studied extensively over the past 50 years. They arise
in many contexts. In transportation, AS have been used to schedule the arrival of cargo
ships and trucks at ports (Giuliano & O’Brien, 2007; Namboothiri & Erera, 2008; Sabria &
Daganzo, 1989), to schedule railway operations (Lawley, Parmeshwaran, Richard, Turkcan,
Dalal, & Ramcharan, 2008; Wendler, 2007), and to allocate airport slots (Madas & Zografos,
2006, 2008). AS have also been adopted in telecommunication networks to schedule data
transmissions (Rose & Yates, 1995; van Leeuwaarden, Denteneer, & Resing, 2006). In manu-
facturing settings, AS have been used to schedule deliveries in just-in-time inventory systems
(Liao, Pegden, & Rosenshine, 1993; Wang, 1993), to support lot-sizing decisions (Dellaert &
Melo, 1998), and to schedule job release times (Biskup, Herrmann, & Gupta, 2008; Yan &
Lai, 2007). The bulk ofthe AS literature, however, deals with the scheduling of patients in a
healthcare context. Excellent overviews of relevant literature may be found with Mondschein
& Weintraub (2003), Cayirli & Veral (2003), Gupta & Denton (2008), and Ahmadi-Javid
et al. (2017).

Nearly all of the literature on AS deals with the scheduling of customers during a single
service session. Studies observing AS ranging over multiple service sessions are rather scarce.
In Vanden Bosch & Dietz (2000), customers are scheduled over several days using a heuristic
approach. The computational complexity involved limited applicability of their model to
settings in which only a small number of customers can be scheduled. Creemers & Lambrecht
(2009b, 2010) analyze appointment-driven systems, and observe the queueing behavior of a
customer from the making of an appointment until the start of the service session in which
the customer will receive service.

It is known that no-shows have a dire impact on the performance of an AS (Alaeddini,
Yang, Reeves, & Chandan, 2015; Cayirli, Veral, & Rosen, 2006; Cayirli, Yang, & Quek, 2012;
Green, 2014; Gupta & Denton, 2008; Ho & Lau, 1992; Zacharias & Pinedo, 2012). As such,
all but a few studies incorporate the possibility of customer no-shows.

The modeling of customer unpunctuality is less prevalent. Relevant literature includes
Mercer (1960), Blanco White & Pike (1964), Fetter & Thompson (1966), Mercer (1973),
Vissers (1979), Sabria & Daganzo (1989), and Wang (1993). Most of these models only
allow for the late arrival of customers. Recent models that take into account early as well
as late customer arrivals include Schuetz & Kolisch (2012), Tai & Williams (2012), Klassen
& Yoogalingam (2014), and Samorani & Ganguly (2016). While our model allows for indi-
vidual unpunctuality probabilities, all earlier studies assume customer unpunctuality to be
homogeneous (i.e., independent from the scheduled arrival times and patient characteristics).

Staff lateness (such that service cannot commence at the start of a service session) is
considered in Blanco White & Pike (1964), Fetter & Thompson (1966), Vissers (1979),
Babes & Sarma (1991), and Liu & Liu (1998a,b). More recent contributions that allow for
physician lateness are found in Klassen & Yoogalingam (2013, 2014).

Server interruptions are modeled in Rising, Baron, & Averill (1973), Klassen & Yoo-
galingam (2013), and Luo, Kulkarni, & Serhan (2012).

Most AS literature assumes that customers are scheduled for arrival at discrete moments
in time only. Individual ASRs assume a single customer to be scheduled at each of the discrete
appointment times. Often, the time intervals between two such discrete appointment times
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are assumed to be fixed. Such studies may be found with Bailey (1952), Welch (1964), Fetter
& Thompson (1966), Klassen & Rohleder (1996), and Rohleder & Klassen (2000). When
allowing for multiple initial appointments (i.e., as to minimize the server idle time at the
beginning of a service session) individual ASRs with fixed intervals are observed in Bailey
(1952), Blanco White & Pike (1964), Klassen & Rohleder (1996), and Ho & Lau (1999).

Ho & Lau (1992) introduce “variable interval” rules, also known as “offset” rules that al-
low for variable times in between two consecutive appointments. Many studies (a.o., Denton
& Gupta, 2003; Kuiper & Mandjes, 2015; Robinson & Chen, 2003) conclude that optimal
appointment intervals have a dome-shaped pattern (i.e., the length of an appointment inter-
val gradually increases towards the middle of the session, after which it gradually decreases).
When the length of the appointment intervals are integer, Klassen & Yoogalingam (2009)
have found that a plateau-dome structure (i.e., the middle intervals have the same length;
creating a plateau) leads to the best results. The optimal pattern of appointment intervals
is shown to depend on service time variability (Chakraborty, Muthuraman, & Lawley, 2010;
Erdogan & Denton, 2013), interruptions (Klassen & Yoogalingam, 2013; Luo et al., 2012),
no-shows (Chakraborty et al., 2010; Erdogan & Denton, 2013), and customer unpunctuality
(Klassen & Yoogalingam, 2014; Tai & Williams, 2012).

Block ASRs allow the scheduling of multiple customers at each of the discrete appoint-
ment times (i.e., during each of the “blocks”). In Blanco White & Pike (1964) and Soriano
(1966), fixed block sizes (i.e., the number of appointments made at each of the discrete
appointment times) as well as fixed block lengths (i.e., the time interval in between two
successive discrete appointment times) are assumed. Variable block sizes and fixed intervals
have been studied in Rising et al. (1973), Fries & Marathe (1981), Liao et al. (1993), and
Liu & Liu (1998a,b). Fixed block sizes and variable intervals are analyzed in Pegden &
Rosenshine (1990), Wang (1997), and Vanden Bosch & Dietz (2000).

As mentioned earlier, appointment systems may focus on the sequencing of customers
during a single service session based on their individual characteristics. We refer to Cayirli
et al. (2008) who use patient-related information for sequencing combined with interval ad-
justments. Deceuninck et al. (2018) introduce several types of unpunctuality, and develop an
algorithm that optimizes a schedule with respect to customer waiting time, server idle time,
and session overtime. Their analysis is based on a discrete-time queueing model (resulting
in explicit expressions of each performance measure). Note that in our paper we also model
the appointment system as a DTMC allowing us to obtain the same performance measures.
The paper of Deceuninck et al. (2018) and our paper are clearly methodologically related
(both use a discretization approach), but are quite different in specific modeling charac-
teristics. Note that discretization not only allows the modeling of general service and/or
arrival processes, it also solves the curse of dimensionality that plagues approaches that
rely on phase-type distributions (see for instance Kuiper & Mandjes (2015); Wang (1993,
1997)). More specifically, the number of phases in a phase-time distribution can become very
large, resulting in a Markov chain that can no longer be analyzed (e.g., for low-variability
processes).

Only a limited number of studies allow customers to have distinct service requirements.
Most of these studies do not only optimize the scheduling of customers, but also the sequence
of customers to be served (Cardoen, Demeulemeester, & Beliën, 2009; Klassen & Rohleder,
1996; Rohleder & Klassen, 2000; Vanden Bosch & Dietz, 2000, 2001).
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Optimization of customer appointment times usually occurs over some subset of: (1)
customer waiting time, (2) server idle time and, (3) server overtime. Most of the research
observes either server idle time or server overtime. Surprisingly few studies assess the trade-
off between all three performance measures. Well-established multidimensional performance
techniques, however, exist. DEA, for instance, provides a means to perform a multidimen-
sional performance analysis based on mathematical optimization (see Cook & Seiford (2009)
for an overview of the DEA literature). Fries & Marathe (1981) and Kaandorp & Koole
(2007) take all three performance measures into account, however, they do not use an objec-
tive technique. In order to deal with multiple performance measures, Ho & Lau (1992) adopt
a frontier approach that can be considered as a simplification of a DEA (Cook & Seiford,
2009).

Ho & Lau (1992, 1999) examine 50 scheduling rules under various environmental factors
(such as the probability of no-shows, the number of patients per session, etc.). In this article,
we extend the work of Ho and Lau by (1) examining more scheduling rules, (2) allowing
more realistic operating environments (3) using analytical methods to obtain performance
measures, and (4) including server overtime as a third objective next to customer waiting
time and server idle time. Our operating environment is more realistic as we allow for
customer unpunctuality, service process interruptions, and session start delays.

Cayirli et al. (2006) extend Ho and Lau’s assessment study by incorporating a wider
set of environmental factors, such as walk-ins, no-shows, and punctuality. Lian, DiStefano,
Shields, Heinichen, Giampietri, & Wang (2010) also examine a large number of appointment
configurations, that differ with respect to the number of total appointment requests, service
time distribution, time slot size, and co-operation ratio (reflecting the degree of mutual pref-
erences between patient and provider). In contrast to our work, their study examines the
impact of avoiding schedule defragmentation while ignoring no-shows, customer unpunctu-
ality, and server interrupts.

4 Definitions

In this section, we classify the different ASRs considered in our study. In addition, we define
the basic processes that govern the AS, and introduce a discretization procedure that allows
us to obtain the discrete distributions of customer service and arrival times. These discrete
distributions are used in the DTMC that is used to model the AS.

4.1 Classification of appointment scheduling rules

Most ASRs may be classified in terms of:

• Ai, the scheduled arrival time of customer i,

• µ−1, the mean service time of a customer,

• σi, the standard deviation of the service time requirement of customer i,

• N , the number of customers that require scheduling, where customer i is in
{0, 1, . . . , N − 1}.

8

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

We implement a set of 314 ASRs and use an analytical model to perform an extensive
computational experiment in which the performance of these rules is assessed with respect
to three performance measures in a wide variety of settings. The adopted set of ASRs is an
extension of the 50 ASRs selected in Ho & Lau (1992, 1999). Our set includes many ASRs
that are common in practice and/or that have been shown to yield good, robust results (e.g.,
dome-shaped ASRs and Bailey’s rule). We are aware of the fact that other sets of parameter
settings are possible. This, however, may further extend the number of ASRs tested. For
instance, to create VI rules, we adopted the same logic as Ho & Lau (1992, 1999). The
advantage of their approach is its simplicity (only a few parameters are required to define
a VI rule). A more involved logic (that uses more parameters) can be devised to capture
more VI rules, however, this would result in a large number of ASRs to be tested (i.e., more
parameters result in more combinations of parameter values, and hence more ASRs).

The ASRs may be summarized as variations of (1) the individual ASR, (2) the block
ASR, and (3) Variable Interval ASRs (also referred to as the VI ASRs).

The individual ASR schedules the arrival times of customers as follows:

Ai = iaµ−1 ∀i : i < l,
Ai = Ai−1 + µ−1 + hσi ∀i : l ≤ i < N,

(1)

where l denotes the number of customers scheduled for arrival at the start of a service
session, a is a multiplier to delay the start of the second until the l-th customer, and h is a
multiplier used to adjust the impact of σi. We implement 91 variants of the individual ASR
by allowing parameters a, l, and h to vary over set {0, 0.3, 0.5}, set L = {1, 2, 3, 4, 5}, and
set H = {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}, respectively.

The block ASR may be summarized as follows:

Ai = 0 ∀i : i < b,

Ajb = A(j−1)b + bµ−1 + h
√
bσjb ∀j : 1 ≤ j < N

b
,

Ajb+i = Ajb ∀i : 1 ≤ i < b,
(2)

where b denotes the block size (i.e., the number of customers assigned to arrive at a single
time instance), and j is an index iterating over all blocks. Varying parameters b and h over
set (L \ {1}) and set H respectively, we obtain 28 ASRs.

The VI ASRs schedule customers using intervals with varying length, forcing a dome-
pattern. The dome rules of Cayirli et al. (2012) and Cayirli & Yang (2014) are examples
of VI ASRs. We implement VI ASRs by speeding up/slowing down the pace of scheduled
arrivals using correction factors r1 and r2. The computation of scheduled arrival times is
performed in two steps. First, all scheduled arrival times are initialized using an individual
ASR with (l = 1) and (h = 0). Next, a correction is applied to speed up and/or slow down
the pace of scheduled customer arrivals.

Initialization:
A0 = 0,
Ai = Ai−1 + µ−1 ∀i : 1 ≤ i < N.

Correction:
Ai = Ai − r1(z − i)hσi ∀i : 1 ≤ i ≤ z,
Ai = Ai − r2(z − i)hσi ∀i : z < i < N,

(3)
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Figure 2: Illustration of different ASRs.

where r1 and r2 are correction factors used to speed up or slow down the succession of
scheduled arrivals and z is any multiple of 5 smaller than N . Parameter r1 controls the
arrival pace of the first z customers; the arrival pace of these customers increases as r1

increases. Conversely, parameter r2 controls the arrival pace of those customers that are
scheduled to arrive after customer z (i.e., z divides the set of customers in two parts). When
varying parameter h over set (H\{0}) and parameters r1 and r2 over the set {0, 1, 2} (where
(r1 + r2) > 0), we obtain 39 times

⌊
N−1

5

⌋
ASRs.

A summary of the 314 ASRs may be found in Table 1. Figure 2 illustrates how the
different types of ASRs are constructed (i.e., how the appointments times of the different
customers are assigned). For instance, Figure 2 illustrates how an individual ASR with
h = 0.1 and l = 2 is used to schedule customers.

4.2 Basic processes

Because of notational requirements introduced in later sections, we will sometimes use the
superscript (2) to identify some of the basic processes. For each customer i, define:

• A∗i , the effective arrival time,

• Ei, the earliest possible arrival time,
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• Li, the latest possible arrival time,

• P [A∗i < Ai], the probability of arriving early (i.e., prior to the scheduled arrival time
Ai),

• P [A∗i > Ai], the probability of arriving late,

• P [A∗i = Ai], the probability of arriving on time,

• P [δ
(2)
i = 1], the probability of customer i not showing up (conversely, event

(
δ

(2)
i = 0

)
corresponds to the showing up of customer i),

• f (E)
i , the density function of the amount of time customer i arrives early (F

(E)
i denotes

the cumulative distribution function),

• f (L)
i , the density function of the amount of time customer i arrives late (F

(L)
i denotes

the cumulative distribution function).

The parameters of the service process of a customer may be defined as follows:

• Smax, the maximum service time requirement of a customer,

• f (2), the density function of the service time requirement of a customer (F (2) denotes
the cumulative distribution function),

• S∗, the realized service time requirement of a customer.

Let n denote the set of system parameters and environmental variable settings that charac-
terize an AS. For a given set n and a given schedule of customer arrivals during a service
session, we obtain the following performance measures:

• On, the expected amount of overtime performed (with O being defined as the available
time capacity after which overtime is performed),

• In, the expected amount of time the server resides in an idle state,

• Vn, the total expected customer waiting time (i.e., the expected sum of the waiting
times of all customers scheduled to receive service during the service session).

• Wn, the expected average customer waiting time.

Note that we assume the server to be idle if: (1) the server has to wait for the first customer,
(2) the server has completed serving a customer but has to wait for a new one to arrive, or
(3) if service of all customers is completed early (because staff wages, equipment costs, etc.
are incurred until the end of the service session).
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Figure 3: Discretization of the service time requirement distribution.

4.3 Discretization

We model the AS as a DTMC. Let ∆ denote the unit time interval over which transitions are
observed (e.g., we observe the state of the system every 5 minutes). During a time interval
of length ∆, various events may take place (the completion of service of a customer, the
arrival of one or more customers, etc.). State transitions (i.e., from a state at time instance
x∆ towards a state at time instance (x + 1)∆, where x is defined as x := x ∈ {0, 1, . . . ,X}
and X∆ is the last possible time instance at which service of all customers completes) need
to take these unobserved events into account.

With respect to the service process, let P
[
S(2) = x

]
denote the probability of finishing

service during time interval [x∆, (x + 1)∆) (where S(2) identifies the time interval in which
service completes and equals

⌊
S∗

∆

⌋
). P

[
S(2) = x

]
is computed as follows:

P
[
S(2) = x

]
=

(x+1)∆∫
x∆

f (2)(t)dt ∀x : x <
⌊
Smax

∆

⌋
,

P
[
S(2) =

⌊
Smax

∆

⌋]
=

Smax∫
bSmax

∆ c∆
f (2)(t)dt.

(4)

Note that the maximum number of service phases equals
(
Y (2) =

(⌊
Smax

∆

⌋
+ 1
))

. The dis-
cretization of the service process is illustrated in Figure 3. The probability of completing
service during a time interval [x∆, (x+ 1)∆), given that service did not finish prior to time
instance x∆, is defined as:

P
[
S(2) := x|S(2) > (x− 1)

]
=

P
[
S(2) = x

]
bSmax

∆ c∑
n=x

P [S(2) = n]

∀x : x ≤
⌊
Smax

∆

⌋
. (5)
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As such, the probability of finishing service during a time interval [x∆, (x+1)∆) is weighted
using the remaining probability mass at a time instance x∆. The weighted probability of
not finishing service during a time interval [x∆, (x+ 1)∆) is:

P
[
S(2) > x|S(2) > (x− 1)

]
= 1− P

[
S(2) = x|S(2) > (x− 1)

]
. (6)

For notational convenience, let Pω[S(2) = x] and Pω[S(2) > x] be the equivalent of
P
[
S(2) = x|S(2) > (x− 1)

]
and P

[
S(2) > x|S(2) > (x− 1)

]
, respectively. Note that for

(x = 0), Pω[S(2) = x] equals P [S(2) = x] and Pω[S(2) > x] equals
(
1− P [S(2) = x]

)
.

With respect to the arrival process, P [A∗i = x] denotes the probability of arrival of cus-
tomer i during time interval [x∆, (x + 1)∆) (where A∗i identifies the time interval in which

customer i arrives and equals
⌊
A∗i
∆

⌋
). The equations that determine probability P [A∗i = x]

are presented below:

P [A∗
i = x] =

P [A∗
i < Ai] + P [A∗

i = Ai] + P [A∗
i > Ai] = 1 x =

⌊
Ei

∆

⌋
∧ x =

⌊
Ai

∆

⌋
∧ x =

⌊
Li

∆

⌋
,

P [A∗
i < Ai] + P [A∗

i = Ai] x =
⌊
Ei

∆

⌋
∧ x =

⌊
Ai

∆

⌋
∧ x <

⌊
Li

∆

⌋
,

P [A∗
i = Ai] + P [A∗

i > Ai] x >
⌊
Ei

∆

⌋
∧ x =

⌊
Ai

∆

⌋
∧ x =

⌊
Li

∆

⌋
,

P [A∗
i = Ai] x >

⌊
Ei

∆

⌋
∧ x =

⌊
Ai

∆

⌋
∧ x <

⌊
Li

∆

⌋
,

P [A∗
i < Ai]

(
F

(E)
i (∞)− F (E)

i

((⌊
Ai

∆

⌋
− γ(E)

i

)
∆
))

x =
⌊
Ei

∆

⌋
∧ x <

⌊
Ai

∆

⌋
,

P [A∗
i < Ai]

(
F

(E)
i

((⌊
Ai

∆

⌋
− x− 2

)
∆
)
− F (E)

i

((⌊
Ai

∆

⌋
− x− 1

)
∆
))

x >
⌊
Ei

∆

⌋
∧ x <

⌊
Ai

∆

⌋
,

P [A∗
i > Ai]

(
F

(L)
i (∞)− F (L)

i

((⌊
Li

∆

⌋
− γi

)
∆
))

x >
⌊
Ai

∆

⌋
∧ x =

⌊
Li

∆

⌋
,

P [A∗
i > Ai]

(
F

(L)
i (((x+ 1)− γi) ∆)− F (L)

i ((x− γi) ∆)
)

x >
⌊
Ai

∆

⌋
∧ x <

⌊
Li

∆

⌋
.

(7)

Where: (1) γi indicates the end of the time interval in which the arrival of a customer i is

scheduled to take place and (2) γ
(E)
i indicates the end of the first time interval in which the

customer is allowed to arrive. γi is defined as follows (γ
(E)
i is defined analogously):

γi :=

⌊
Ai

∆

⌋
+ 1. (8)

The maximum number of arrival phases equals
(
Y (A) =

(⌊
Li

∆

⌋
−
⌊
Ei

∆

⌋
+ 1
))

. The probability
of a customer i arriving during a time interval [x∆, (x+ 1)∆), given that customer i did not
arrive prior to time instance x∆, is given by:

P [A∗i = x|A∗i > (x− 1)] =
P [A∗i = x]

bLi
∆ c∑

n=x

P [A∗i = n]

∀x :

⌊
Ei

∆

⌋
≤ x ≤

⌊
Li

∆

⌋
. (9)

The corresponding weighted probability of a customer not arriving during a time interval
[x∆, (x+ 1)∆) is:

P [A∗i > x|A∗i > (x− 1)] = 1− P [A∗i = x|A∗i > (x− 1)] . (10)

For notational convenience let Pω[A∗i = x] and Pω[A∗i > x] be the equivalent of
P [A∗i = x|A∗i > (x− 1)] and P [A∗i > x|A∗i > (x− 1)], respectively. Note that for (x = 0),
Pω[A∗i = 0] equals P [A∗i = 0] and Pω[A∗i > 0] equals (1− P [A∗i = 0]).
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5 Model

In this section we discuss the DTMC that is used to model the AS and that allows us to
obtain the performance measures. To efficiently compute these performance measures we
use an algorithm that is also introduced here.

5.1 Discrete-Time Markov Chain

In order to illustrate the state transitions, define: (1) N, the set of all customers that re-
quire scheduling and (2) Tx, the set of customers allowed to arrive during the time interval
[x∆, (x + 1)∆). Using the earliest and latest arrival time instances of a customer i, mem-
bership of Tx may easily be determined. The set of customers that have become eligible
to arrive at a time instance x∆ is defined as (Ex := (Tx \Tx−1)) (with (E0 ≡ T0)). In
addition, define the following state-dependent sets:

• S, the set of customers that are eligible to arrive but that have not arrived yet (i.e., S
is the subset of customers in Tx that did not yet arrive),

• U, the set of customers that arrives (including no-shows),

• V, the set of arriving customers that do not show up.

Note that V ⊆ U ⊆ S ⊆ Tx ⊆ N at any time instance x∆.
The AS may be modeled as a DTMC of four dimensions:

• x∆, the time instance at which the system is observed,

• Q : Q ∈ {0, 1, 2, . . .}, the number of waiting customers in queue at time instance x∆,

• y : y ∈
{
−2, 0, . . . , Y (2)

}
, the phase of the service process at time instance x∆ (where

(y = −2) indicates the completion of service of all customers, (y = −1) indicates server
idleness, and (y ≥ 0) indicates that a service process is ongoing),

• S, the set of customers that are eligible to arrive at time instance x∆ but that have
not arrived yet.

Because S ⊆ Tx at any time instance x∆, the size of the state space depends heavily on the
cardinality of set Tx (i.e., the size of the state space is mainly determined by the number of
customers that is allowed to arrive in parallel during a given time interval). The state space
may be divided into two sets of states: (1) transient states which are visited only once and
(2) absorbing states which indicate the service completion of all customers at a given time
instance (more specifically, each time instance x∆ is associated with a single absorbing state
that masses all probability to complete the service process of all customers at time instance
x∆). We represent the state space using quadruples (x,Q, y,S). In addition, let π [x,Q, y,S]
denote the probability to visit state (x,Q, y,S).

A state transition (from a state at time instance x∆ towards a state at time instance
(x + 1)∆) may result in one (or multiple) events occurring. The probability of arrival of a
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set of customers U at a state (x,Q, y,S) is defined as P [U|x,S]. The equations determining
probability P [U|x,S] are given below:

P [U|x,S] =



1 for U = ∅ ∧Uc = ∅,∏
i∈S

Pω[A∗i = x] for Uc = ∅,∏
n∈S

Pω[A∗n > x] for U = ∅,∏
i∈U

Pω[A∗i = x]
∏

n∈Uc

Pω[A∗n > x] for U 6= ∅ ∧Uc 6= ∅,

(11)

where Uc is the set of customers that do not arrive. Analogously, the probability of having
a set of customers V not showing up, when a set of customers U is supposed to arrive, is
defined as P [V|U]. Probabilities P [V|U] are computed as follows:

P [V|U] =



1 for V = ∅ ∧Vc = ∅,∏
i∈U

P
[
δ

(2)
i = 1

]
for Vc = ∅,∏

n∈U
P
[
δ

(2)
n = 0

]
for V = ∅,∏

i∈V
P
[
δ

(2)
i = 1

] ∏
n∈Vc

P
[
δ

(2)
n = 0

]
for V 6= ∅ ∧Vc 6= ∅,

(12)

where Vc is the set of customers that do show up.
Seven transitions are possible at a time instance x∆:

• service is ongoing and does not finish during [x∆, (x+ 1)∆),

• service is ongoing, finishes and at least one customer is present in the queue at time
instance (x+ 1)∆,

• service is ongoing, finishes and although no customers are left in the queue at time
instance (x+ 1)∆, there are still customers that have to arrive,

• service is ongoing, finishes and all customers have arrived or have failed to show up
(i.e., an absorbing state has been entered; service has finished at time instance x∆).

• the server is idle and at least one customer arrives during [x∆, (x+ 1)∆),

• the server is idle, no customer arrives during [x∆, (x+ 1)∆) and some customers have
yet to arrive,

• the server is idle, no more customers are present in the queue and all customers have
arrived (i.e., an absorbing state has been entered; service has finished at time instance
x∆).

5.2 Performance measures

The transition probabilities may be used to calculate π [x,Q, y,S], the probability of visiting
a state (x,Q, y,S). Using the probabilities to visit each of these states, the performance
measures may easily be obtained. More specifically, a state (x,Q, y,S) (with corresponding
probability π [x,Q, y,S]) is associated with:
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• a total customer waiting time of Q∆ time units (i.e., Q customers are waiting during
time interval [x∆, (x+ 1)∆)),

• a server idle time of ∆ time units if (y = −1),

• a server idle time of (O − x∆) time units if: (1) (x∆ < O) or (2) (y = −2) (i.e.,
(x,Q, y,S) is an absorbing state),

• a server overtime of (x∆−O) time units if: (1) (x∆ > O) or (2) (y = −2).

General performance measures may be obtained as the weighted sum of the performance
measures corresponding to each of the states (where the probabilities of visiting a state serve
as weights). More formally, for a given set n and a given schedule of customer arrivals, the
expected amount of overtime performed is given by:

On =
X∑

x>bO∆c
π[x, 0,−2, ∅] (x∆−O) . (13)

With respect to the expected server idle time, we obtain the following result:

Ii =

(
X∑

x=0

∑
S⊆Tx

π[x, 0,−1,S]∆

)
+

bO∆c−1∑
x=0

π[x, 0,−2, ∅] (O − x∆)

 . (14)

The total expected average customer waiting time may be expressed as:

Vn =
X∑

x=0

N∑
Q=1

Y (2)∑
y=0

∑
S⊆Tx

π [x,Q, y,S]Q∆. (15)

Conversely, the expected average customer waiting time is given by:

Wn =
Vn

N∑
i=0

P [δ
(2)
i = 0]

. (16)

Where

(
N∑
i=0

P [δ
(2)
i = 0]

)
denotes the expected number of customers to show up.

5.3 Algorithm and implementation

The algorithm consists of two main steps: (1) initialization and selection of the ASR and
(2) iterative computation of probabilities π[x,Q, y,S] and the assessment of performance
measures. During the initialization, the ASR is selected. The selected rule determines the
arrival process. The service process does not depend on the ASR. The iterative procedure
uses probabilities π[x,Q, y,S] (associated with a time instance x∆) to compute probabilities
π[(x + 1), Q, y,S] (associated with a time instance (x + 1)∆). Performance measures are
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computed simultaneously. After computation of all probabilities π[(x + 1), Q, y,S], prob-
abilities π[x,Q, y,S] are no longer needed. As such, the memory occupied by these latter
probabilities may be released. The iterations continue until all probability mass is gathered
in the absorbing states. Next, performance measures corresponding to the selected ASR are
stored. The process is repeated until all adopted ASRs have been assessed. A general outline
of the algorithm is presented in algorithm 1.

Algorithm 1 Algorithm for computing performance measures.

for all x do
Compute Pω[S(2) = x] and Pω[S(2) > x]

end for
for all Appointment scheduling rules do

Compute Pω[A∗i = x] and Pω[A∗i > x]
Set x = 0
for all Q, y,S do

Compute π[x,Q, y,S]
Update performance measures

end for
while x < X do

for all Q, y,S do
Compute π[(x+ 1), Q, y,S] using π[x,Q, y,S]
Update performance measures

end for
Free memory used by states (x,Q, y,S)
Increment x

end while
Store performance measures

end for

The algorithm is implemented in Visual C++. The main inputs of the application are:
(1) the size of the unit time interval, (2) the number of customers that require scheduling,
(3) the parameters of the service process, and (4) the parameters of the arrival process of
each of the customers.

5.4 Model extensions

In this section, we discuss three model extensions: (1) the delayed start of a service session,
(2) interruptions that take place during the service process of a customer (i.e., preemptive
interrupts), and (3) interruptions that take place in between the service process of two
subsequent customers (i.e., non-preemptive interrupts, the delayed start of service itself).
In order to take these extensions into account, we allow for an additional Markov chain
dimension that captures the type of service process currently in progress. As such the
resulting DTMC holds five dimensions. Its state space may be represented by quintuples
(x,Q, y, w,S), where w indicates the type of service currently in progress. By convention we
have:
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• (w = −1) if the server is idle,

• (w = 0) if the service process cannot start because the start of the service session is
delayed,

• (w = 1) if the ongoing service process is subject to non-preemptive interrupts,

• (w = 2) if a regular service process is ongoing (i.e., as defined in the previous sections),

• (w = 3) if the ongoing service process is subject to preemptive interrupts.

With the exception of (w = −1), these service outages are modeled as “special” customers,
each associated with a unique service process characterization. More specifically, each type
of service has unique parameters: f (w), P [S(w) = x], P [S(w) = x|S(w) > (x − 1)], P [S(w) >
x|S(w) > (x − 1)], Y (w) and P [δ(w) = 1] (note that index i is discarded for the non-regular
types of service processes). The type of the ongoing service process is decided at: (1) the
start of a service session (for the delayed start of a services session), (2) the start of a service
process (for the delayed and the regular start of a service process), and (3) the end of a service
process (for a service process subject to preemptive interrupts). A detailed discussion of how
to implement these extensions is given in Creemers (2009a).

6 Computational experiment

The model has been verified by means of an elaborate simulation study in which each of
the operating environments is simulated using 5,000,000 simulation iterations (Creemers,
2009a). Various values of ∆ were tested, and a value of (∆ = 5) was shown to provide a
sufficient level of accuracy while maintaining computational performance. As such, in the
upcoming experiment we let (∆ = 5). Note that the 5-minute intervals have also been used
by other researchers, such as Klassen & Yoogalingam (2009). It should be noted, however,
that restricting our experiments to the more practical setting of 5-minute intervals does not
allow to simulate a true ASR VI environment. This restriction might explain the results
presented in Section 6.2. In what follows, we discuss the design and the results of the
computational experiment.

6.1 Experimental design

We consider 243 operating environments that are generated by all combinations of the ex-
perimental design parameters given in Table 2. The parameter values of the computational
experiment are based on the studies listed in Cayirli et al. (2008). Note that, if the proba-
bility for customers to arrive early or late is zero, we do not have to consider the variability
of the early or late arrival times.

Let P = {n1,n2, . . . ,n243} denote the set of operating environments. In addition, define
(O := Nµ−1) as the time capacity after which overtime is performed. We evaluate 158,
236, and 314 ASRs for each value of N , respectively (resulting in a total of 57,348 instances
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Table 2: Experimental design: environmental parameters.
Environmental parameter Settings
Number of customers N {10, 20, 30}
Squared coefficient of variation of service times (service SCV)
(the mean service requirement equals 300 time units) {0.2, 0.5, 1.0}
Squared coefficient of variation of early and late arrival times
(the mean early/late arrival time amounts to 150 time units) {0.5, 1.0}
Probability of early arrival {0, 0.1}
Probability of late arrival {0, 0.1}
Probability of no-show {0, 0.1, 0.2}

analyzed). The performance measures of an ASR r : r ∈ {1, 2, . . . , 314} are:

Or =
243∑
i=1

Oni,r, (17)

Ir =
243∑
i=1

Ini,r, (18)

Wr =
243∑
i=1

Wni,r, (19)

where Oni,r, Ini,r, and Wni,r denote the expected server overtime, the expected server idle
time, and the expected customer waiting time when ASR r is used to schedule the arrival of
customers at an AS that operates in environment ni.

While the implementation of an ASR might yield good results in terms of a single per-
formance measure (e.g., server idle time), its impact on another performance measure (e.g.,
customer waiting time) can be detrimental. Hence, the need to consider multiple performance
measures when evaluating ASRs. To conduct a multidimensional performance evaluation,
we use a composite indicator (CI):

CIr = voOr + viIr + vwWr, (20)

where CIr is the weighted sum of the performance of an ASR r and v(·) is the weight allocated
to performance measure (·).

An ASR r performs well if the score over all performance measures is low (i.e., the
lower the value of the CI, the better the ASR performs). Although practical and intuitive,
CIs have several drawbacks, among which the need to normalize the performance measures
and the inherent difficulty of determining appropriate weights (Cherchye, Moesen, Rogge,
Van Puyenbroeck, Saisana, Saltelli, Liska, & Tarantola, 2008). Cherchye et al. (2008) have
demonstrated the applicability of DEA to objectively set weights. In order to avoid the
subjective fixing of weights, we use DEA to identify the optimal set of weights for each ASR
individually.

The resulting CIs are conservative (i.e., allow high weights to be set on strong perfor-
mance measures and low weights on measures for which performance is bad). This can be

20

http://dx.doi.org/10.1016/j.ejor.2018.10.036
http://www.stefancreemers.be
mailto:info@stefancreemers.be


doi:10.1016/j.ejor.2018.10.036 • www.stefancreemers.be • info@stefancreemers.be

a welcome feature as best-practice ASRs can be identified. Nevertheless, zero weights are
often allocated, which is problematic as every performance measure included is by definition
relevant. Extensive research has been conducted in order to identify methods that allow
to avoid zero weights while maintaining the statistical properties of the DEA method (e.g.,
Cooper, Ruiz, & Sirvent, 2007; Portela & Thanassoulis, 2006).We opt to avoid zero weights
by adding relative weight restrictions, thereby forcing each weight to have a relative weight
of at least 5% of the total weights (see also constraints (26), (27), and (28) below). We
implement a super-efficiency DEA approach, which eliminates the Decision Making Unit
(DMU) under evaluation, referred to as r′, from the reference set S (Chen & Du, 2015). We
solve the following model for each ASR:

min voOr′ + viIr′ + vwWr′ (21)

subject to

(voOr) + (viIr) + (vwWr) ≥ 1 ∀r ∈ S\{r′} (22)

vo ≤ 1 (23)

vi ≤ 1 (24)

vw ≤ 1 (25)

vo ≥ 0.05(vo + vi + vw) (26)

vi ≥ 0.05(vo + vi + vw) (27)

vw ≥ 0.05(vo + vi + vw) (28)

Model (21) minimizes the value of the CI by selecting weights, that need to be smaller
than 1 and larger than 5% of the sum of all weights. Consequently, the selected weights
do not contain any zero values. Model (21) is solved for each of the ASRs, resulting in 314
CI values and 314 sets of weights. The model yields high CI values for ASRs that are less
attractive. In order to make the CI more intuitive, we use the inverse value. As such, higher
CI values indicate a better performing ASR.

Although the objectivity of a DEA-based performance evaluation is a merit, decision
makers can have good reasons to value some performance measures more than others. Dif-
ferent possibilities exist to incorporate such a valuation into the DEA (Cook & Seiford, 2009).
We incorporate the valuation of different performance measures by adding constraints:

v(·)

v(·)
≤ 1, (29)

where (·) is a performance measure. Constraint
(

vo
vi
≤ 1
)

for example, imposes the restriction

that the expected server idle time is considered to be more important than the expected
server overtime. We obtain results for the following four scenarios: (1) server overtime is
more important (vo ≥ vi and vo ≥ vw), (2) server idle time is more important (vi ≥ vo and
vi ≥ vw), (3) customer waiting time is more important (vw ≥ vo and vw ≥ vi), and (4) there
is no preference between the three outputs.

Some ASRs will perform strongly across a wide range of possible weight sets, while
others may have a CI value that depends heavily on the choice of a particular set of weights.
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Table 3: Ranking of ASRs based on average efficiency across environments.
N=10 N=20 N=30 Average

Rank ASR Type ASR Type ASR Type ASR Type CI (%) Maverick
1 7 IND 7 IND 144 VI 7 IND 100.0% 1.39
2 8 IND 8 IND 8 IND 8 IND 97.9% 1.32
3 70 IND 70 IND 70 IND 70 IND 97.6% 1.41
4 6 IND 128 VI 228 VI 138 VI 97.3% 1.26
5 36 IND 175 VI 145 VI 228 VI 97.3% 1.19
6 37 IND 9 IND 128 VI 247 VI 97.3% 1.27
7 151 VI 208 VI 247 VI 69 IND 97.2% 1.32
8 138 VI 151 VI 152 VI 175 VI 97.2% 1.15
9 69 IND 138 VI 176 VI 151 VI 97.2% 1.15
10 133 VI 69 IND 138 VI 208 VI 97.2% 1.15
11 38 IND 152 VI 139 VI 9 IND 97.1% 1.18
12 9 IND 189 VI 214 VI 36 IND 97.1% 1.18
13 132 VI 145 VI 190 VI 176 VI 97.1% 1.19
14 137 VI 139 VI 69 IND 214 VI 97.1% 1.18
15 143 VI 228 VI 39 IND 139 VI 97.1% 1.27

To measure the sensitivity of the CI value to the selected set of weights, we calculate the
maverick index (Doyle & Green, 1994; Markovits-Somogyi, 2011). If the maverick index is
high, the CI score of the ASRs is sensitive to the choice of weights. A low maverick index
indicates a robust performance across different sets of weights.

6.2 Experimental results

Next to the development of a new analytical model to study the impact of ASRs, we also show
some interesting findings from our experiments using DEA. First, we discuss the performance
of all ASRs over all environments. Next, we assess the impact of environmental variables and
discuss the influence of subjective valuation of the different performance measures. Although
our method is suitable to select the best ASR for any given setting and preference structure,
we focus on general insights with respect to the three types of ASRs (i.e., individual ASRs,
block ASRs, and VI ASRs).

Based on the results of the DEA, Table 3 provides an overview of the best-performing
ASRs across all environments, and over all performance measures. The table reports: (1)
the 15 best-ranked ASRs for a different number of customers (N = {10, 20, 30}) and (2)
the best-ranked ASR on average along with their CI value and maverick index. Note that
we represent the CI of the ASR under evaluation as the CI of the best performing ASR on
average over the CI of the ASR under evaluation, and that we include all possible ASRs
(from 1 to 314) in the average ranking (while for N = 10, ASR > 158, and for N = 20,
ASR > 236 are not feasible).

It is striking that the individual ASRs are among the best performing ASRs, even more
so when the number of customers is small. The simple Bailey-Welch rule (ASR 8) performs
very good in terms of the efficiency score. Rule 7 allows for a maximum adjustment for the
service time standard deviation. When N = 30 (see Table 3), rule 7 is no longer among the
best-performing ASRs. Since this rule benefits from the fact that two initial customers are
present at the start of the service session, this means that, the more customers, the longer
the service session takes, the less impact these initial customers have.
We also note high efficiency scores for the VI ASRs (dome-shaped rules). Indeed, these
conclusions are largely confirmed by the literature. It is, however, also highly recommended
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to look at the Maverick scores (as a measure of robustness). Here we observe that the
individual ASRs perform less in terms of robustness compared to the VI-based rules. The
individual ASRs are in other words more sensitive to the weight selection. Since our paper
values robustness, we opt for VI ASRs in complex, dynamic environments. In the remaining
of this section, we will further refine our results.

Block ASRs are the least attractive type of ASR. The best-performing block ASRs (ASR
92, 93, and 94) have a block size of two with a small (or even zero) adjustment for service
time variance (based on the CI over all environments, of the 314 possible ASRs, they are
ranked at positions 210, 218, and 231, respectively). Their maverick index is rather low. The
dominance within the block ASRs of rules with a block size of two (i.e., customers arrive in
groups of two) confirms the conclusions of earlier research (Blanco White & Pike, 1964; Ho
& Lau, 1992).

The efficiency results reported in Table 3 are based on the average performances for the
three objectives over all settings listed in Table 2. The setting in which the probability of
early arrivals is higher than the probability of late arrivals, i.e., probability of early arrival
= 0.1 and probability of late arrival = 0 in Table 2, is however much more realistic than
the other three combinations of both probabilities. When only this most realistic setting is
considered, the rankings listed in Table 3 do not change much; i.e., ASR 7 and 8 are still
the best performing ASRs, the individual ASRs and VI ASRs are outperforming the block
ASRs, and ASR 92 and 93 are still the best performing block ASRs.

Based on both prior research and the results discussed above, we select eight ASRs for
further discussion. We select (1) good performing ASRs for different number of customers
according to Table 3, (2) ASRs that are sufficiently different from one another (i.e., IND, VI,
as well as block ASRs), and (3) ASRs that can be implemented for all values of N . Table 4
presents the selected ASRs and their characteristics.

We select four individual ASRs that differ in terms of number of customers at session
start, first arrival delay, and maximum adjustment for service time standard deviation. The
customers at session start equals 1 or 2. The two selected block ASRs both have a block size
of two and a very small (or zero) adjustment of the arrival times. With respect to the VI
ASRs, we select two rules that postpone the arrival rate of customers after the arrival of the
first 5 customers (the arrival rate of the first five customers is not corrected). They differ in
terms of the adjustment for service time standard deviation. In what follows, starting from
the 8 selected ASRs, we first illustrate the effect of the different environmental parameters.
Next, we analyze the impact of subjective valuation of the different performance measures.

6.2.1 Impact of environmental variables

In Figure 4, we examine the impact of (1) the probability of no-shows, (2) the variability of
the service times (service SCV), and (3) the number of customers during a service session, on
the performance (in terms of customer waiting time, server idle time, and server overtime)
of the ASRs in Table 4.

From Figure 4 it is clear that the customer waiting time increases with: (1) the number of
customers N , (2) the level of service time variability, and (3) a decreasing probability of no-
shows. The impact of service SCV and no-shows on server overtime is similar to their impact
on waiting time. A larger number of customers, service time variability, and probability of
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Table 4: Overview of the selected ASRs.
ASR Characteristics

7
Individual ASR, one customer at session start, no first arrival
delay, maximum adjustment for service time standard deviation (h=0.3)

8
Individual ASR, two customers at session start, no first arrival
delay, no adjustment for service time standard deviation (h=0)

36
Individual ASR, two customers at session start, medium first arrival
delay (a=0.3), no adjustment for service time standard deviation (h=0)

70
Individual ASR, two customers at session start, maximum first arrival
delay (a=0.5), maximum adjustment for service time standard deviation (h=0.3)

92
Block ASR, block size of two customers, no adjustment for
service time standard deviation (h=0)

93
Block ASR, block size of two customers, no adjustment for
service time standard deviation (h=0.05)

138
VI ASR, postpone arrivals after first 5 customers (z=5),
maximum adjustment for service time standard deviation (h=0.2)

151
VI ASR, postpone arrivals after first 5 customers (z=5),
small adjustment for service time standard deviation (h=0.1)

no-shows all lead to an increase in server idle time.
ASR 7 (IND ASR with l = 1 and a = 0) and 151 (VI ASR with z = 5) have a strong per-

formance in customer waiting time, however they have the highest server idle and overtime.
The block ASRs 92 and 93 are characterized by lower performance (i.e., higher waiting, idle,
and overtime).

We find that the individual ASR 70 (with l = 2 and a = 0.5), which allows for a high
first arrival delay, performs worse on server idle and overtime. Compared to the block ASRs
92 and 93, the VI ASRs also perform worse on server idle and overtime.

Table 5 shows the impact of a change in number of customers, service SCV, and no-
show probability, on customer waiting time, server idle time, and server overtime for the
different ASRs. A positive value means the time increased (i.e., got worse) due to the
change. The table confirms that an increase of the service time variability always leads to a
worse performance in all three performance criteria, which is an intuitive result. An increase
in the number of customers also results in longer waiting times, more overtime, and more
sever idle time. The latter is counter-intuitive at first sight, but can be explained by the fact
that in our experiments the time capacity increases with a growing number of customers
(see Section 6.1). More customers, combined with a corresponding larger time capacity,
leads to an increased probability of server idle time. This can be explained by the fact that
with a growing number of customers who are processed in a longer time horizon, there is a
higher probability that things go seriously wrong during specific moments (higher customer
waiting times) while other moments are calm (higher service idle time). Finally, an increase
of no-shows is negative for idle time, but not for waiting time, nor for overtime; which is
again an intuitive result.

Table 6 shows which of the 314 ASRs performs best under environments with high no-
shows, high variability in service time, or a high number of customers. While the individual
ASRs perform best under high no-show probability and high service time variability, the
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Figure 4: Impact of environmental variables on the selected ASR CI score.

variable ASRs are often the best performing ASRs under a high number of customers. Once
more, the simple Bailey-Welch rule (ASR 8) performs very well, however, it is not in the top
10 best-ranked ASRs when service time variability is high. The strong performance of the
Bailey-Welch rule was also noted in Ho & Lau (1992).

From our results we also found that customer unpunctuality only has a minor impact on
the performance of an ASR. For instance, for ASR 8, while the impact on waiting time, idle
time, and overtime of a change in number of customers, no shows, and service variability lies
between −58.9% and 349.5% (see Table 5), a change in the probability of being late/early
from 0 to 0.1 has only a minor impact ranging between −3.88% and 0.81%. While customers
being too late is negative for both waiting time, idle time, and overtime, customers arriving
too early is only negative for waiting time.

Based on the results discussed above, we observe that the impact of environmental vari-
ables also differs depending on the selected ASR.
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Table 5: Change in performance due to a change in environmental factors for the selected
ASR.

ASR
Change in performance

when N increases
from 10 to 30

Change in performance
when probability of no-shows

increases from 0 to 0.20

Change in performance
when service time variability

increases from 0.2 to 1
Waiting
time

Idle
time

Over
time

Waiting
time

Idle
time

Over
time

Waiting
time

Idle
time

Over
time

7 321.2% 187.5% 183.9% -53.6% 70.8% -13.3% 113.4% 77.0% 128.4%
8 349.5% 144.3% 81.1% -58.9% 183.9% -66.4% 88.4% 49.5% 226.1%
36 454.6% 150.6% 23.5% -54.8% 146.9% -58.9% 92.8% 56.3% 206.2%
70 608.2% 126.4% 88.5% -57.9% 102.2% -22.3% 38.7% 98.5% 230.2%
92 436.4% 106.3% 22.6% -58.0% 166.4% -62.8% 78.6% 46.8% 180.7%
93 398.9% 110.9% 36.3% -57.7% 154.3% -57.4% 73.1% 53.0% 190.6%
138 993.2% 119.6% 64.7% -49.1% 118.3% -40.4% 41.8% 56.0% 141.4%
151 105.3% 441.1% 630.3% -53.4% 77.0% -16.4% 117.4% 72.9% 128.0%

Table 6: Ranking of ASRs based on their ability to cope with a high amount of no-shows,
service time variability, or number of customers.

Rank
High probability
of no shows (0.2)

High service time
variability

(service SCV=1)

High number
of customer

(N=30)

1 7 IND 7 IND 144 VI
2 8 IND 10 IND 8 IND
3 36 IND 9 IND 70 IND
4 43 IND 11 IND 228 VI
5 125 VI 16 IND 145 VI
6 16 IND 12 IND 128 VI
7 71 IND 13 IND 247 VI
8 64 IND 70 IND 152 VI
9 15 IND 14 IND 176 VI
10 44 IND 17 IND 138 VI
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6.2.2 Impact of subjective valuation of performance measures

We now discuss how the suitability of the ASRs changes when either the customer waiting
time, the server idle time, or the server overtime is pivotal for scheduling purposes. Table
7 lists the 15 best-performing ASRs across different performance measure preferences (e.g.,
when waiting time is more important the weights assigned by the DEA are higher than
the weights of idle time and overtime) While ASRs 7 and 70 (both IND ASR with h=0.3)
perform well under different performance preferences, ASR 8 (the Bailey-Welch rule) is only
ranked 200th of the 314 ASRs when waiting time is more important. When comparing the
overall ranking in Table 3, and the ranking in Table 7 when idle time is the most important
performance measure, they are exactly the same. Moreover, the ranking where idle time
is most important, looks very similar to what we observe for a high number of customers
(N = 30); in Table 3, we find that VI ASRs 144 and 145 (both with z = 5) perform well when
waiting time is important, whereas they perform worse when idle or overtime is important.
As expected, block ASRs perform badly. However, we find that they perform better when
waiting time is important (the first block ASR in the ranking (i.e., ASR 98) is ranked 104th)
compared to the situation where idle time or overtime is more important (in which the first
block ASR (i.e., ASR 92) is ranked 210th and 212th, respectively). In block schedules, groups
of customers are scheduled at fixed moments in time in order to exploit a pooling effect that
leads to a decreased total service time variability that reduces the expected waiting time and
idle time. It must be clear that overtime cannot take advantage of this, because the total
processing time will not be impacted. On the contrary, with block ASRs the server has a
larger probability to be idle just before the block start times, thereby extending the total
session duration and thus having a negative impact on overtime. Furthermore, similar to
block ASRs, individual ASRs allow to schedule multiple customers at the start of a session,
but they are not restricted in the remainder of the session to a number of fixed moments to
schedule groups of customers. Consequently, an individual ASR that schedules a sufficiently
large number of customers at the start of the session will often protect better against idle
time, when compared to a block ASR.

7 Conclusion

Appointment scheduling rules are used to determine the point in time at which a customer
is to receive service during a service session. ASRs are commonly applied in service and
manufacturing industries (e.g., healthcare or after-sales service).

We develop an analytical model that uses a DTMC and an efficient algorithm to assess
the performance (in terms of customer waiting time, server idle time, and server overtime)
of ASRs in a wide variety of settings. More specifically, the model takes into account the
following environmental factors: (1) customer unpunctuality, (2) no-shows, (3) service in-
terruptions, and (4) delay in the session start time. In addition, the model allows the
characterization of the arrival and service process for each individual customer. The model
has been verified using a simulation study. We use the model to assess the performance of
314 ASRs and use DEA to compare the results.

This paper focuses on the development of good appointment rules, and does not fo-
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Table 7: Ranking of ASRs across environments when performance measures are not consid-
ered to be equally important.

Rank
Waiting Time is
most important

Idle Time is
most important

Overtime is
most important

ASR CI Type ASR CI Type ASR CI Type

1 7 1 IND 7 1 IND 8 1 IND
2 70 0.9744 IND 8 0.9994 IND 7 0.9993 IND
3 144 0.9672 VI 70 0.9981 IND 70 0.9970 IND
4 6 0.9638 IND 138 0.9951 VI 138 0.9938 VI
5 143 0.9629 VI 228 0.9949 VI 228 0.9937 VI
6 145 0.9626 VI 247 0.9946 VI 247 0.9936 VI
7 42 0.9617 IND 69 0.9944 IND 69 0.9930 IND
8 69 0.9605 IND 175 0.9940 VI 175 0.9927 VI
9 128 0.9596 VI 151 0.9938 VI 151 0.9924 VI
10 140 0.9579 VI 208 0.9934 VI 208 0.9920 VI
...

104 98 0.8049 Block 287 0.9751 VI 3 0.9711 IND
...

200 8 0.7008 IND 55 0.9349 IND 251 0.9233 VI
...

207 92 0.6865 Block 91 0.9270 IND 243 0.9164 VI
...

210 54 0.6833 IND 92 0.9250 Block 56 0.9146 IND
...

212 256 0.6779 VI 222 0.9242 VI 92 0.9107 Block
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cus on the sequencing issue. We opted for this approach because we believe that in most
real-life cases the dynamic nature of the appointment process dominates. In such complex
environments it is of vital importance to focus on robustness.

In general, we find that the well-known Bailey-Welch rule (an individual ASR with 2
customers scheduled at the start) performs well over many environments. This good per-
formance is weaker in case of high service time variability or if waiting time becomes more
important. It is interesting to see that simple rules like these can perform very well. The
other individual ASRs also perform quite well, even more so for a small number of customers.
Block ASRs perform poorly in all cases. When considering the robustness of ASRs over var-
ious environments, VI (or dome-shaped) ASRs are among the best performing ASRs. This
indicates that VI ASRs are to be recommended in AS where environmental variables are
prone to change.

When idle time or overtime become more important, the average ranking of ASRs hardly
changes when compared to the ranking where there is no preference of measures. When
waiting time becomes more important, however, the ranking changes drastically. This is a
crucial insight. The optimal ASR in an environment where waiting time is highly important
may perform poorly in an environment where server idle time and/or overtime are important
(and vice versa). In addition, we show that the three performance measures (customer wait-
ing time, server idle time, and overtime) are always negatively impacted by an increase in the
number of customers (with corresponding increase in time capacity) and in the level of ser-
vice time variability. An increase in no-show probability, on the other hand, increases server
idle time, but decreases customer waiting times and server overtime. Note that generally,
customer unpunctuality does not seem to have a large impact on the different performance
measures. An important managerial insight that follows, is that good performing ASRs do
not necessarily need to be updated when customer punctuality changes.

There are several interesting avenues for future research. First of all, we would like to
examine to what extent our approach can efficiently cope with a multiple-server setting.
Second, allowing for cancellations would enable us to include a fourth objective, (i.e., the
minimizations of the number of cancellations), and to study different heuristics to decide
on a cancellation in order to obtain an optimal trade-off with the other objectives. These
heuristics might take advantage of particular appointment schedules that allow for a faster
cancellation decision, reducing the expected waiting time and overtime. The continuously
growing collection of data in health care (both medical data and operational data about in-
ternal processes) combined with a continuously increasing computing power will enable the
use of complex ASRs which go beyond the human capability of understanding. The ques-
tion arises whether the resulting “optimized” appointment schedules based on such “black
box” algorithms will be generally accepted. Simple ASRs have the important advantage
that implementation is easy and schedules based on understandable rules are more easily
accepted. Nevertheless, we do believe that big data analysis and artificial intelligence in-
cluding machine learning techniques will have a big impact on appointment systems. Rather
than in developing complex ASRs, the surplus value will mainly lie in the discovery of “hid-
den patterns” that allow for the development of better simple ASRs. For instance, patient
groups could be identified based on medical data and patient characteristics as age, work
status, etc. Relatively simple ASRs could be derived that exploit this information; e.g., a
patient of group A has a higher chance of arriving late and should be scheduled earlier. In
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contrast to “black box” derived appointment schedules, the discovery of such hidden, but
understandable patterns can also be published and consequently be used to improve other
appointment systems than the ones that discovered the pattern. With this in mind, we
believe that the importance of efficient algorithms to implement and evaluate (simple) ASRs
will only increase in the near future, when big data analysis and machine learning will allow
to detect hidden patterns and relations that could be exploited in simple ASRs.
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