
 

 

 

 

Two sequencing problems: 
equivalence, optimal 
solution, and 
state-of-the-art results 
Creemers S. 

KBI_1720 

      
 
 
 

      

 

 



Two sequencing problems: Equivalence, optimal solution, and

state-of-the-art results

Stefan Creemers
IESEG School of Management, Rue de la digue 3, 59000 Lille, France

KU Leuven, Research Center for Operations Management, Naamsestraat 69, 3000 Leuven, Belgium

s.creemers@ieseg.fr

We show that the serial SNPV and the LCFDP are equivalent. The serial SNPV is a

special case of the SNPV that tries maximize the expected NPV of a project by sequencing

activities that have stochastic durations and cash flows that are incurred at the start of an

activity. The LCFDP, on the other hand, minimizes the expected cost of the sequential

diagnosis of a set of tests that have known execution costs and failure probabilities.
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1 Introduction

The stochastic net present value maximization problem (SNPV) tries to maximize the expected

NPV (eNPV) of a project with n activities that have stochastic durations. Each activity i : i ∈
N = {1, . . . , n} has a duration distribution function fi, and a cash flow ci ∈ R is incurred at the

start of activity i. Upon completion of the project, a payoff cp is obtained. A solution to the SNPV

is a policy that schedules activities such that the eNPV of the project (i.e., the expected sum of the

discounted cash flows that are incurred during the lifetime of the project) is maximized. The SNPV

has been considered by, among others, Sobel et al. (2009), Creemers et al. (2010), and Wiesemann

et el. (2010). The literature on the SNPV has been reviewed by Wiesemann and Kuhn (2015), who

not only stress the importance of stochastic project scheduling (over deterministic scheduling), but

who also argue that NPV is a more important objective than project makespan.

The LCFDP is a variant of the sequential testing problem (STP) where n precedence-related

tests have to be scheduled such that the expected cost of the diagnosis of a system is minimized.

Each test i : i ∈ N = {1, . . . , n} has a known cost ci and a failure probability pi. In this article,

we consider the setting where a single test results in the failure of the system (i.e., we study so-

called n-out-of-n or serial systems). For such a setting, it can be shown that there exists a full

order sequence of tests in N that is globally optimal. The LCFDP is related to the R&D project

scheduling problem studied in De Reyck and Leus (2008), who show that their problem is NP-hard.

It follows that the LCFDP is also NP-hard if tests are precedence-related (Wei et al., 2013). The

LCFDP arises in many practical contexts, such as the inspection of containers arriving at a port

(Madigan et al., 2011) and the identification of toxic chemicals (Gowtham et al., 2012). A literature
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review on the STP in general, and on the LCFDP in particular, may be found with Ünlüyurt (2004),

Wei et al. (2013), and Coolen et al. (2014).

The serial SNPV is a special case of the SNPV where activities have to be scheduled in series.

The serial SNPV arises in contexts where there is a bottleneck resource, or in settings where projects

have a serial structure. A solution to the serial SNPV is a sequence of activities that maximizes the

eNPV of the project (over all possible sequences). In what follows, we show that: (1) the LCFDP

is equivalent to the serial SNPV, (2) a well-known result from the literature on the LCFDP may be

used to obtain the optimal solution to the serial SNPV if activities are not precedence related, and

(3) methods for solving the SNPV can also be used to solve the LCFDP. In addition, we perform

a computational experiment that shows that the state-of-the-art procedure for solving the SNPV

(a more general problem) outperforms the state-of-the-art procedure for solving the LCFDP.

2 Equivalence of the serial SNPV and the LCFDP

Let s = {s1, . . . , sn} denote a sequence of n activities, where si is the activity at position i in the

sequence. As shown by Creemers (2016), the eNPV of a sequence s is given by

cs1 +

n∑
i=2

φ1,(i−1)(r)csi ,

where r is the discount rate, and φ1,i is the discount factor for a sequence of activities {s1, . . . , si}.
φ1,i(r) is obtained as follows

φ1,i(r) =

i∏
j=1

φsj (r),

where φi(r) ≡ φi,i(r) is the discount factor that applies for a single activity i. φi(r) is given by

φi(r) = Mi(−r),

where Mi(−r) is the moment-generating function of the duration distribution function fi about

−r.
The objective of the serial SNPV is to find a sequence that maximizes

cs1 +

 n∑
i=2

csi

i−1∏
j=1

φsj (r)

+

(
cp

n∏
i=1

φi(r)

)
,

where the latter term is a constant that does not depend on the sequence of activities (i.e., the

latter term may be ignored when making sequencing decisions), and hence the objective reduces to

max
s
cs1 +

 n∑
i=2

csi

i−1∏
j=1

φsj (r)

 . (1)
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The objective of the LCFDP, on the other hand, is to find a sequence of tests that minimizes

the cost of the sequential diagnosis of a system, and is given by

max
s
cs1 +

 n∑
i=2

csi

i−1∏
j=1

qsj

 , (2)

where qi = 1−pi is the success probability of test i. Eq. (1) and Eq. (2) are equivalent if φi(r) ≡ qi
for all i ∈ N. We conclude that the LCFDP is equivalent to the serial SNPV, which in turn is a

special case of the SNPV.

3 Optimal sequence

In the absence of precedence relationships, Boothroyd (1960) has shown that the optimal solution to

the LCFDP is a sequence that arranges tests in (increasing) order of their ratio of cost over failure

probability. Therefore, for the LCFDP, the optimal sequence can be determined in polynomial

time, and if
cs1
ps1
≤ cs2
ps2
≤ . . . ≤ csn

psn
,

then s = {s1, s2, . . . , sn} is optimal.

The above result can also be used to determine the optimal sequence that maximizes the eNPV

of a project where activities are not precedence related. More precisely, in the absence of precedence

relationships, sequence s = {s1, s2, . . . , sn} is optimal if

cs1
1− φs1(r)

≤ cs2
1− φs2(r)

≤ . . . ≤ csn
1− φsn(r)

.

To illustrate this finding, we use an example project with 5 activities that have exponentially-

distributed durations with rate parameter λi : i ∈ N = {1, 2, 3, 4, 5}. The data of the example

project are summarized in Table 1. Note that φi is the moment-generating function of fi about

−r, and is given by

φi(r) =
λi

λi + r
(3)

for an exponentially-distributed duration with rate parameter λi. The optimal sequence executes

activities 4, 2, 3, 5, and 1 in series, and yields an eNPV of 15.22.

4 Solving the LCFDP

In this section, we solve the LCFDP using the state-of-the-art procedure of Creemers (2017) that

was designed to solve the SNPV. Creemers (2017) assumes that activity durations are exponen-

tially distributed, and uses a continuous-time Markov chain (CTMC) to model the state space. A

backward stochastic dynamic program (SDP) is used to obtain the globally optimal policy that

maximizes the eNPV of a project (note that a solution to the SNPV is a scheduling policy rather
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i ci λi φi ci(1− φi)−1 si
1 -10 1/2 0.833 -60 5
2 10 1/4 0.714 35 2
3 -15 1/6 0.625 -40 3
4 20 1/8 0.556 45 1
5 -36 1/20 0.250 -48 4

p 100
r 0.1

Table 1: Data of the example project

than a sequence). In contrast to most of the literature on the scheduling of Markovian PERT net-

works (i.e., PERT networks where activities have exponentially-distributed durations), Creemers

(2017) does not use uniformly directed cuts (UDCs) to structure the state space, nor does he repre-

sent the state of the system using sets of idle, ongoing, and finished activities (see e.g., Creemers et

al., 2010). Instead, Creemers (2017) uses arrays to store states that are defined only by the set of

finished activities. The cardinality of a state (i.e., the number of finished activities) determines the

array in which the state is stored (there is one array for each number of finished activities). Because

states with cardinality (i+ 1) are only accessible from states with cardinality i, at most two arrays

need to be stored in memory (i.e., after calculating all value functions of states with cardinality

i, states with cardinality (i + 1) are no longer needed, and they can be removed from memory).

Together with a stricter definition of the state space (by only using the set of finished activities),

this more efficient structuring of the state space results in a significant reduction of memory and

computational requirements (when compared to other methods that solve the SNPV).

In order to solve an instance of the LCFDP by means of a procedure for solving the SNPV, tests

first need to be “transformed” into activities. As explained in Section 2, the serial SNPV and the

LCFDP are equivalent if φi(r) ≡ qi for all i : i ∈ N. In the procedure of Creemers (2017), activities

are assumed to have exponentially-distributed durations, and therefore, the discount factor of an

activity i is given by Eq. (3). As such, a test i with cost ci and failure probability pi can be

transformed into an activity i with cost ci and rate parameter

λi =
pir

1− pi
.

After transforming all tests into activities, the procedure of Creemers (2017) can be used to solve an

instance of the LCFDP. Note that, in order to make sure that activities are executed in a sequence,

we impose impose a resource constraint (i.e., each activity requires one unit of a renewable resource

that has unit availability).

We compare the performance of the above approach with the state-of-the-art procedure of Wei

et al. (2013). Wei et al. (2013) propose both a branch-and-bound (B&B) as well as an SDP

procedure to solve the k-out-of-n STP (i.e., at least k out of n components should be functional,
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otherwise the system is down). The SDP procedure significantly outperforms the B&B, and in

what follows, we will compare its performance with that of the procedure of Creemers (2017). Note

that, if we let k = n, the k-out-of-n STP corresponds to the LCFDP as defined by Boothroyd

(1960). Similar to the procedures of Creemers et al. (2010) and Coolen et al. (2014), The SDP

procedure of Wei et al. (2013) uses UDCs to structure the state space. Once the states of a UDC

are no longer required, the UDC is discarded, and its memory is freed.

We use the instances of Wei et al. (2013) to compare the performance of both SDP procedures.

Wei et al. (2013) use RanGen (Demeulemeester et al., 2003) to generate three data sets that each

contain 10 instances for each value of n : n ∈ {10, 20, . . . , 120} and for each value of OS : OS ∈
{0.4, 0.6, 0.8} (where OS is the order strength; a measure of the density of the project network).

Each data set has different failure probabilities. Because failure probabilities do not impact the

computational performance of the SDP procedures, we select the data set that has the lowest failure

probabilities (i.e., failure probabilities are drawn from a uniform distribution with a minimum of

0.8 and a maximum of 1). Both procedures are tested on an Intel 3.3 GHz desktop computer with

16GB of RAM.

Table 2 reports on the number of instances solved by each approach, and shows that the proce-

dure of Creemers (2017) outperforms the procedure of Wei et al. (2013). This can be explained by

the more efficient memory-management techniques adopted by Creemers (2017). When comparing

average computation times (in seconds) on instances that could be solved by Wei et al., however,

Table 3 shows that the procedure of Creemers (2017) is somewhat slower (26.5% on average). Since

the procedure of Creemers (2017) was designed to solve the SNPV (a more general problem), this

does not come as a surprise. In addition, it is clear that memory requirements rather than CPU

times are the bottleneck for the problem at hand. Even for larger problems, Table 4 shows that

the procedure of Creemers (2017) is able to solve instances within a reasonable time frame.

5 Conclusions

In this article, we study two problems. On the one hand, we have the serial SNPV (a special case of

the SNPV) that tries to sequence activities with stochastic durations as to maximize the eNPV of a

project (i.e., the expected sum of the discounted cash flows that are incurred during the lifetime of

a project). The LCFDP, on the other hand, tries to determine the sequence of tests that minimizes

the expected cost of the diagnosis of a system. In contrast to the (serial) SNPV, the LCFDP does

not take into account (test) durations, nor does it discount cash flows that are incurred during

diagnosis. Although the serial SNPV and the LCFDP appear to be unrelated, we show that they

are in fact equivalent. In addition, in the absence of precedence relationships, we show that the

optimal solution to the serial SNPV may be obtained by adopting the result of Boothroyd (1960),

who finds that the optimal solution to the LCFDP can be found by arranging tests according to

their ratio of cost over failure probability. Last but not least, we show that the LCFDP can be seen

as a special case of the SNPV, and that procedures for solving the SNPV can also be used to solve
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Creemers (2017) Wei et al. (2013)

n OS = 0.8 OS = 0.6 OS = 0.4 OS = 0.8 OS = 0.6 OS = 0.4

10 10 10 10 10 10 10

20 10 10 10 10 10 10

30 10 10 10 10 10 10

40 10 10 10 10 10 10

50 10 10 10 10 10 10

60 10 10 10 10 10 10

70 10 10 10 10 10 9

80 10 10 10 10 10 0

90 10 10 0 10 10 0

100 10 10 0 10 10 0

110 10 10 0 10 7 0

120 10 9 0 10 0 0

Table 2: Number of instances solved (out of 10) by the procedures of Creemers (2017) and Wei et
al. (2013)

Creemers (2017) Wei et al. (2013)

n OS = 0.8 OS = 0.6 OS = 0.4 OS = 0.8 OS = 0.6 OS = 0.4

10 0 0 0 0 0 0

20 0 0 0 0 0 0

30 0 0 0.01 0 0 0.01

40 0 0.01 0.17 0 0.01 0.13

50 0 0.04 1.99 0 0.02 1.44

60 0.01 0.19 25.4 0 0.11 19.3

70 0.01 0.94 178 0.01 0.58 156

80 0.03 4.00 – 0.01 2.40 –

90 0.05 15.0 – 0.02 9.48 –

100 0.11 77.1 – 0.05 45 –

110 0.24 223 – 0.10 151 –

120 0.56 – – 0.24 – –

Table 3: Comparison of average computation time (in seconds) for the instances that could be
solved by Wei et al. (2013)
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n OS = 0.8 OS = 0.6 OS = 0.4

10 0 0 0

20 0 0 0

30 0 0 0.01

40 0 0.01 0.17

50 0 0.04 1.99

60 0.01 0.19 25.4

70 0.01 0.94 205

80 0.03 4.00 2,013

90 0.05 15.0 –

100 0.11 77.1 –

110 0.24 323 –

120 0.56 1,009 –

Table 4: Average computation time (in seconds) for the procedure of Creemers (2017)

the LCFDP. In addition, a computational experiment shows that the state-of-the-art procedure for

solving the SNPV (a more general problem) outperforms the state-of-the-art procedure for solving

the LCFDP. Future research should therefore focus on developing better performing procedures for

solving the LCFDP.
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